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Abstract. Quantitative automata model beyond-boolean aspects of sys-
tems: every execution is mapped to a real number by incorporating
weighted transitions and value functions that generalize acceptance con-
ditions of boolean ω-automata. Despite the theoretical advances in sys-
tems analysis through quantitative automata, the first comprehensive
software tool for quantitative automata (Quantitative Automata Kit, or
QuAK) was developed only recently. QuAK implements algorithms for
solving standard decision problems, e.g., emptiness and universality, as
well as constructions for safety and liveness of quantitative automata.
We present the architecture of QuAK, which reflects that all of these
problems reduce to either checking inclusion between two quantitative
automata or computing the highest value achievable by an automaton—
its so-called top value. We improve QuAK by extending these two algo-
rithms with an option to return, alongside their results, an ultimately
periodic word witnessing the algorithm’s output, as well as implementing
a new safety-liveness decomposition algorithm that can handle nondeter-
ministic automata, making QuAK more informative and capable.

Keywords: quantitative automata · automata-based analysis · quan-
titative safety · quantitative liveness

1 Introduction

Traditional system behavior analysis categorizes system behaviors as correct or
incorrect. However, modern systems require more nuanced approaches to ad-
dress performance and robustness criteria. Quantitative automata generalize
boolean ω-automata by adding rational-valued weights to their transitions and
using value functions (instead of acceptance conditions) that accumulate infinite
weight sequences into single values. Common value functions include Inf, Sup,
LimInf, and LimSup (respectively generalizing safety, reachability, co-Büchi and
Büchi acceptance conditions), as well as DSum (discounted sum), LimInfAvg, and
LimSupAvg (limit average a.k.a. mean payoff).
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Decision problems for boolean automata extend naturally to quantitative
automata. For example, a quantitative automaton A is nonempty with respect
to a rational number v iff A maps some infinite word w to a value at least v [13].
These problems are closely related to game theory [21] and enable reasoning
about quantitative system aspects. Although quantitative automata have been
extensively studied from a theoretical perspective [16,5,8,34,35,4,26,24,25,7] and
these works could significantly impact their practical verification, until recently,
there was no general software tool for their analysis.

Quantitative Automata Kit (QuAK) [11] is the first general tool for quan-
titative automata analysis. It currently supports several automaton types (Inf,
Sup, LimInf, LimSup, LimInfAvg, LimSupAvg) and provides decision procedures
for fundamental problems such as emptiness, universality, inclusion, and safety.

We present an improved version of QuAK: (i) the safety-liveness decomposi-
tions are extended to handle nondeterministic automata, and (ii) the inclusion
and top value algorithms are extended with capabilities to return a witness—an
ultimately periodic word explaining the algorithm’s output. For checking inclu-
sion, i.e., whether A(w) ≤ B(w) for all words w, the witness ŵ is a word such that
A(ŵ) > B(ŵ). For computing top value, i.e., >A = supw∈Σω A(w), the witness
ŵ is a word such that A(ŵ) = >A. Since all the other procedures are reduced to
either inclusion checking or top value computation, these extensions significantly
improve QuAK’s informativeness for analyzing quantitative automata.

Several approaches extend system modeling beyond boolean aspects. One
uses multi-valued truth domains [9,15], while another relies on weighted au-
tomata [36], where numerical weights are assigned to transitions and accumu-
lated via semiring operations. Tools such as Vaucanson [32], Vcsn [18], and
Awali [31] support weighted automata analysis. Other approaches address digital-
analog interactions [2,1,22], with tools like UPPAAL [30] and HyTech [23]. Signal
temporal logic [33] allows reasoning about specification satisfaction degrees, as
implemented in Breach [19], S-TaLiRo [3], and RTAMT [37]. Probabilistic veri-
fication handles uncertainties, as implemented in PRISM [29] and STORM [17].

2 Quantitative Automata

Let Σ be a finite alphabet of letters. We denote by Σ∗ (resp. Σω) the set of all
finite (resp. infinite) words over Σ. For w ∈ Σω and u ∈ Σ∗, we write u ≺ w
when u is a prefix of w. A value domain D is a nontrivial complete lattice. A
quantitative property is a total function Φ : Σω → D.

We study quantitative automata, which define a subset of quantitative prop-
erties on totally-ordered value domains. Formally, a nondeterministic quantita-
tive automaton (or simply an automaton) is a tuple A = (Σ,Q, s, δ) where Σ is
a finite alphabet, Q is a finite nonempty set of states, s ∈ Q is the initial state,
and δ : Q×Σ → 2Q×Q is a finite transition function over weight-state pairs [13].
A transition is a tuple (q, σ, x, q′) ∈ Q×Σ×Q×Q such that (x, q′) ∈ δ(q, σ), de-
noted q σ:x−−→ q′. The weight of a transition t = (q, σ, x, q′) is denoted by γ(t) = x.
An automaton A is deterministic when |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ,
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Fig. 1: A nondeterministic LimInfAvg-automaton A over the alphabet Σ = {hi, lo},
modeling the power consumption of a device where starting with high-power mode is
not reversible, its safety closure B, and its liveness component C in a corresponding
decomposition [6].

and it is total (a.k.a. complete) when |δ(q, a)| ≥ 1 for every q ∈ Q and a ∈ Σ.
We require quantitative automata to be total.

A run of A on an infinite word w = a0a1 . . . is an infinite sequence ρ =
q0

a0:x0−−−→ q1
a1:x1−−−→ q2 . . . of transitions where q0 = s and (xi, qi+1) ∈ δ(qi, ai)

for each integer i ≥ 0. Since each transition has a weight, a run ρ = t0t1 . . .
produces an infinite sequence γ(ρ) = γ(t0)γ(t1) . . . of weights. A value function
Val : Qω → R maps infinite weight sequences to real values. A Val-automaton is
a quantitative automaton equipped with the value function Val, i.e., where each
run ρ is mapped to the value obtained by applying Val to its weight sequence
γ(ρ). Given a Val-automaton A, the value of an infinite word w is A(w) =
sup{Val(γ(ρ)) | ρ is a run of A on w}. The top value of an automaton A is >A =
supw∈Σω A(w), and its bottom value is ⊥A = infw∈Σω A(w). We consider the
below value functions over an infinite sequence x = x0x1 . . . of rational weights.

– Inf(x) = inf
n≥0

xn

– LimInf(x) = lim inf
n→∞

xn

– LimInfAvg(x) = lim inf
n→∞

(
1
n

n−1∑
i=0

xi

)
– Sup(x) = sup

n≥0
xn

– LimSup(x) = lim sup
n→∞

xn

– LimSupAvg(x) = lim sup
n→∞

(
1
n

n−1∑
i=0

xi

)

– For a discount factor λ ∈ Q ∩ (0, 1), DSumλ(x) =
∑
i≥0 λ

ixi

The automaton A in Figure 1 shows a LimInfAvg automaton modeling the
long-term average power consumption of a device with two operating modes.

Quantitative Automata Problems We describe the standard decision prob-
lems of quantitative automata as well as the problems related to their safety and
liveness. The complexity results are summarized in Table 1.

An automaton A is nonempty (resp. universal) with respect to a threshold
v ∈ Q iffA(w) ≥ v for some (resp. all) w ∈ Σω. Nonemptiness (resp. universality)
is closely related to computing an automaton’s top value (resp. bottom value): A
is nonempty (resp. universal) with respect to v ∈ Q iff >A ≥ v (resp. ⊥A ≥ v).
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Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum

Nonemptiness check PTime
Universality check PSpace-complete Undecidable Open
Inclusion check PSpace-complete Undecidable Open

Equivalence check PSpace-complete Undecidable Open
Top value

computation PTime

Safety closure
construction O(1) PTime O(1)

Safety-liveness
decomposition O(1) PTime O(1)

Safety check O(1) PSpace-complete ExpSpace; PSpace-hard O(1)
Liveness check PSpace-complete

Constant-function
check PSpace-complete

Table 1: The complexity of performing the operations on the left column with respect
to nondeterministic automata with the value function on the top. The decidability
results in the top five rows are shown in [28,13] and undecidability in [16,12,27]. All
the results in the bottom five rows are shown in [6]. All the operations are computable
in PTime for deterministic automata.

An automaton A is included in (resp. equivalent to) an automaton B iff A(w) ≤
B(w) (resp. A(w) = B(w)) for all w ∈ Σω. An automaton A is constant iff there
exists c ∈ R such that A(w) = c for all w ∈ Σω. This problem is closely related
to safety and liveness of quantitative automata, as we discuss below.

Quantitative safety generalizes the boolean view by considering membership
hypotheses in the form of lower bound queries: a property is safe iff every wrong
membership hypothesis has a finite witness for the violation. Formally, a quan-
titative property Φ : Σω → D is safe iff for every w ∈ Σω and v ∈ D with
Φ(w) 6≥ v, there exists a finite prefix u ≺ w such that supw′∈Σω Φ(uw′) 6≥ v [25].
Moreover, an automaton A is safe iff the quantitative property defined by A is
safe. Given a quantitative property Φ : Σω → D, its safety closure is defined
as SafetyCl(Φ)(w) = infu≺w supw′∈Σω Φ(uw′) and is the least safety property
that bounds Φ from above [25]. As expected, a property Φ is safe iff Φ(w) =
SafetyCl(Φ)(w) for all w ∈ Σω, and we can compute the safety closure of an
automaton A—the automaton SafetyCl(A) that expresses the safety closure of
the property defined by A. While this characterization is useful for some classes
of quantitative automata, the equivalence problem is undecidable for LimInfAvg
and LimSupAvg automata. For these, the safety problem is still decidable by a
reduction to their constant-function problem [7].

Quantitative liveness extends the membership-based view: a quantitative
property Φ : Σω → D is live iff for every word (whose value is less than
> = supD) there exists a wrong membership hypothesis without a finite wit-
ness for the violation. Formally, a quantitative property Φ : Σω → D is live
iff for all w ∈ Σω, if Φ(w) < >, then there exists a value v ∈ D such that
Φ(w) 6≥ v and for all prefixes u ≺ w, we have supw′∈Σω Φ(uw′) ≥ v [25]. More-
over, an automaton A is live iff the quantitative property defined by A is live.
For the common classes of quantitative automata, deciding liveness reduces to
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inclusion

equivalence universality

bottom valuend,b constant function

liveness safetyla

safetyb

top value

safety closure inclusiond,la bottom valued
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Fig. 2: Reductions of quantitative automata problems in QuAK. The subscript b
stands for basic (i.e., Val ∈ {Inf, Sup, LimInf, LimSup}), la for limit-average (i.e.,
Val ∈ {LimInfAvg, LimSupAvg}), d for deterministic, and nd for nondeterministic. For
example, checking safety of limit-average automata (safetyla) reduces to their constant-
function problem, which reduces to universality of LimInf automata.

the constant-function problem: an automaton A is live iff SafetyCl(A) is con-
stant [7]. Just like every boolean property is the intersection of its safety closure
and a liveness property, every quantitative property is the pointwise minimum
of its safety closure and a liveness property [25]. Recently, it was proved that all
the common classes of automata can be decomposed into its safety closure and
a liveness property [6]. Consider the automaton A, its safety closure B, and its
liveness part C as defined in Figure 1. In B, each strongly connected component
(SCC) of A is assigned the highest value achievable within the component, rep-
resenting the greatest among the lower bound hypotheses that cannot be refuted
by any finite prefix. The liveness part C consists of three components: the upper
part is a copy of A (ensuring C can have runs with the same value as A); the
middle part contains a >A-weighted copy of the highest-valued cycle in each
SCC (enabling C to achieve high-valued runs when A and B agree); and the
lower part includes a sink state looping with the lowest weight of A (allowing C
to “escape” the middle part and realize a value using the upper part).

3 QuAK Overview and Usage

QuAK is written in C++ using the standard library, and the source code is
available online [10]. It can be used both as a C++ library and a stand-alone
tool through the command-line interface – see our project repository for instruc-
tions. For Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg automata, QuAK
implements the operations listed in Table 1 and a monitoring procedure where
the monitor maintains the maximal and minimal possible values or a running
average. The problems handled in QuAK reduce to either the inclusion problem
or the top value computation, as shown in Figure 2. For the details of these
reductions, we refer the reader to [13,6,11].

We improve over QuAK’s initial version [11] in two ways. First, a safety-
liveness decomposition for nondeterministic automata is implemented, follow-
ing a new result that provides a decomposition for nondeterministic automata
with prefix-independent value functions, namely, LimInf, LimSup, LimInfAvg, and
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Word* witEmpt, witSafe;
Automaton* A = new Automaton("A.txt");
Automaton* B = safetyClosure(A, LimInfAvg);
Automaton* C = livenessComponent(A, LimInfAvg);
bool flagEmpt = A->isNonEmpty(LimInfAvg, 5, &witEmpt);
bool flagSafe = A->isSafe(LimInfAvg, &witSafe);

Fig. 3: An example usage of QuAK as a C++ library. The functions isNonEmpty and
isSafe now take an additional (optional) parameter for storing the stem and the period
of the ultimately periodic word witnessing the algorithms’ outputs.

LimSupAvg automata [6, Thm. 9.11]. Second, the inclusion-checking and the top-
value computation algorithms are extended with an option to return a witness
(for negative instance of inclusion and all instances of top value). Since all other
problems reduce to these two (see Figure 2), the ability to generate witnesses
makes QuAK more informative for analyzing quantitative automata. Inclusion
checking, a central component of QuAK, is implemented using an antichain-
based algorithm, extending FORKLIFT for Büchi automata [20], with details
and performance benefits discussed in [11]. As this algorithm systematically
searches for counterexamples, it inherently supports witness construction for
negative instances. Top value computation is based on graph-theoretic algo-
rithms [13], with witness generation achieved via backtracking pointers. These
improvements, along with other features of QuAK, were validated through unit
testing, random testing, and cross-validation with existing implementations.

QuAK reads and constructs automata from text files. Each automaton is
represented as a list of transitions of the format a : v, q -> p which encodes
a transition from state q to state p with letter a and weight v. The initial state
of the input automaton is the source state of the first transition in its text file.

Recall the nondeterministic limit-average automatonA and its safety-liveness
decomposition from Figure 1. The first three lines of the code snippet in Figure 3
construct the automata A, B, and C as presented in Figure 1. The nonemptiness
check returns false, and witEmpt points to an array storing u = hi and v = hi
as >A = A(hiω) = 6. Similarly, the safety check returns false and witSafe
points to an array storing u = v = lo as B(loω) = 4 and A(loω) = 2.

4 Conclusion

We presented an improved version of QuAK, our software tool for automat-
ing quantitative automata analysis, which extends the functionality introduced
in [11]. Future work aims to improve the tool’s scalability and applicability while
exploring more efficient verification methods. One promising avenue is the devel-
opment of symbolic approaches to efficiently manage large state spaces. Another
key direction involves extending the tool to support additional formalisms, such
as various types of discounted-sum automata [4], mean-payoff automaton expres-
sions [12], and nested quantitative automata [14]. In parallel with these efforts,
developing novel verification methods specifically tailored to the safety fragments
of expressive quantitative formalisms presents an exciting research direction.
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