
Automating the Analysis of Quantitative
Automata with QuAK?

Marek Chalupa1 , Thomas A. Henzinger1 , Nicolas Mazzocchi2 , and
N. Ege Saraç1

1 Institute of Science and Technology Austria (ISTA), Austria
{mchalupa,tah,esarac}@ista.ac.at

2 Slovak University of Technology in Bratislava, Slovak Republic
nicolas.mazzocchi@stuba.sk

Abstract. Quantitative automata model beyond-boolean aspects of sys-
tems: every execution is mapped to a real number by incorporating
weighted transitions and value functions that generalize acceptance con-
ditions of boolean ω-automata. Despite the theoretical advances in sys-
tems analysis through quantitative automata, the first comprehensive
software tool for quantitative automata (Quantitative Automata Kit, or
QuAK) was developed only recently. QuAK implements algorithms for
solving standard decision problems, e.g., emptiness and universality, as
well as constructions for safety and liveness of quantitative automata.
We present the architecture of QuAK, which reflects that all of these
problems reduce to either checking inclusion between two quantitative
automata or computing the highest value achievable by an automaton—
its so-called top value. We improve QuAK by extending these two algo-
rithms with an option to return, alongside their results, an ultimately
periodic word witnessing the algorithm’s output, as well as implementing
a new safety-liveness decomposition algorithm that can handle nondeter-
ministic automata, making QuAK more informative and capable.

Keywords: quantitative automata · automata-based analysis · quan-
titative safety · quantitative liveness

1 Introduction

Traditional system behavior analysis categorizes system behaviors as correct or
incorrect. However, modern systems require more nuanced approaches to ad-
dress performance and robustness criteria. Quantitative automata generalize
boolean ω-automata by adding rational-valued weights to their transitions and
using value functions (instead of acceptance conditions) that accumulate infinite
weight sequences into single values. Common value functions include Inf, Sup,
LimInf, and LimSup (respectively generalizing safety, reachability, co-Büchi and
Büchi acceptance conditions), as well as DSum (discounted sum), LimInfAvg, and
LimSupAvg (limit average a.k.a. mean payoff).
? This work was supported in part by the ERC-2020-AdG 101020093.

http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0002-2985-7724
http://orcid.org/0000-0001-6425-5369
http://orcid.org/0009-0000-2866-8078


2 M. Chalupa, T. A. Henzinger, N. Mazzocchi, N. E. Saraç

Decision problems for boolean automata extend naturally to quantitative
automata. For example, a quantitative automaton A is nonempty with respect
to a rational number v iff A maps some infinite word w to a value at least v [13].
These problems are closely related to game theory [21] and enable reasoning
about quantitative system aspects. Although quantitative automata have been
extensively studied from a theoretical perspective [16,5,8,34,35,4,26,24,25,7] and
these works could significantly impact their practical verification, until recently,
there was no general software tool for their analysis.

Quantitative Automata Kit (QuAK) [11] is the first general tool for quan-
titative automata analysis. It currently supports several automaton types (Inf,
Sup, LimInf, LimSup, LimInfAvg, LimSupAvg) and provides decision procedures
for fundamental problems such as emptiness, universality, inclusion, and safety.

We present an improved version of QuAK: (i) the safety-liveness decomposi-
tions are extended to handle nondeterministic automata, and (ii) the inclusion
and top value algorithms are extended with capabilities to return a witness—an
ultimately periodic word explaining the algorithm’s output. For checking inclu-
sion, i.e., whether A(w) ≤ B(w) for all words w, the witness ŵ is a word such that
A(ŵ) > B(ŵ). For computing top value, i.e., >A = supw∈Σω A(w), the witness
ŵ is a word such that A(ŵ) = >A. Since all the other procedures are reduced to
either inclusion checking or top value computation, these extensions significantly
improve QuAK’s informativeness for analyzing quantitative automata.

Several approaches extend system modeling beyond boolean aspects. One
uses multi-valued truth domains [9,15], while another relies on weighted au-
tomata [36], where numerical weights are assigned to transitions and accumu-
lated via semiring operations. Tools such as Vaucanson [32], Vcsn [18], and
Awali [31] support weighted automata analysis. Other approaches address digital-
analog interactions [2,1,22], with tools like UPPAAL [30] and HyTech [23]. Signal
temporal logic [33] allows reasoning about specification satisfaction degrees, as
implemented in Breach [19], S-TaLiRo [3], and RTAMT [37]. Probabilistic veri-
fication handles uncertainties, as implemented in PRISM [29] and STORM [17].

2 Quantitative Automata

Let Σ be a finite alphabet of letters. We denote by Σ∗ (resp. Σω) the set of all
finite (resp. infinite) words over Σ. For w ∈ Σω and u ∈ Σ∗, we write u ≺ w
when u is a prefix of w. A value domain D is a nontrivial complete lattice. A
quantitative property is a total function Φ : Σω → D.

We study quantitative automata, which define a subset of quantitative prop-
erties on totally-ordered value domains. Formally, a nondeterministic quantita-
tive automaton (or simply an automaton) is a tuple A = (Σ,Q, s, δ) where Σ is
a finite alphabet, Q is a finite nonempty set of states, s ∈ Q is the initial state,
and δ : Q×Σ → 2Q×Q is a finite transition function over weight-state pairs [13].
A transition is a tuple (q, σ, x, q′) ∈ Q×Σ×Q×Q such that (x, q′) ∈ δ(q, σ), de-
noted q σ:x−−→ q′. The weight of a transition t = (q, σ, x, q′) is denoted by γ(t) = x.
An automaton A is deterministic when |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ,



Automating the Analysis of Quantitative Automata with QuAK 3

(A)

q0q1 q2 q3
hi : 6 lo : 3

Σ : 6 lo : 2

hi : 5

lo : 3
Σ : 4

(B)

q0q1 q
hi : 6 lo : 4

Σ : 6 Σ : 4

(C)

q0q1 q2 q3
hi : 6 lo : 3

Σ : 6 lo : 2

hi : 5

lo : 3
Σ : 4

q′
1 q′

3

q⊥

hi : 6

hi : 6

hi : 6

hi : 6Σ : 2 Σ : 2
Σ : 2

Fig. 1: A nondeterministic LimInfAvg-automaton A over the alphabet Σ = {hi, lo},
modeling the power consumption of a device where starting with high-power mode is
not reversible, its safety closure B, and its liveness component C in a corresponding
decomposition [6].

and it is total (a.k.a. complete) when |δ(q, a)| ≥ 1 for every q ∈ Q and a ∈ Σ.
We require quantitative automata to be total.

A run of A on an infinite word w = a0a1 . . . is an infinite sequence ρ =
q0

a0:x0−−−→ q1
a1:x1−−−→ q2 . . . of transitions where q0 = s and (xi, qi+1) ∈ δ(qi, ai)

for each integer i ≥ 0. Since each transition has a weight, a run ρ = t0t1 . . .
produces an infinite sequence γ(ρ) = γ(t0)γ(t1) . . . of weights. A value function
Val : Qω → R maps infinite weight sequences to real values. A Val-automaton is
a quantitative automaton equipped with the value function Val, i.e., where each
run ρ is mapped to the value obtained by applying Val to its weight sequence
γ(ρ). Given a Val-automaton A, the value of an infinite word w is A(w) =
sup{Val(γ(ρ)) | ρ is a run of A on w}. The top value of an automaton A is >A =
supw∈Σω A(w), and its bottom value is ⊥A = infw∈Σω A(w). We consider the
below value functions over an infinite sequence x = x0x1 . . . of rational weights.

– Inf(x) = inf
n≥0

xn

– LimInf(x) = lim inf
n→∞

xn

– LimInfAvg(x) = lim inf
n→∞

(
1
n

n−1∑
i=0

xi

)
– Sup(x) = sup

n≥0
xn

– LimSup(x) = lim sup
n→∞

xn

– LimSupAvg(x) = lim sup
n→∞

(
1
n

n−1∑
i=0

xi

)

– For a discount factor λ ∈ Q ∩ (0, 1), DSumλ(x) =
∑
i≥0 λ

ixi

The automaton A in Figure 1 shows a LimInfAvg automaton modeling the
long-term average power consumption of a device with two operating modes.

Quantitative Automata Problems We describe the standard decision prob-
lems of quantitative automata as well as the problems related to their safety and
liveness. The complexity results are summarized in Table 1.

An automaton A is nonempty (resp. universal) with respect to a threshold
v ∈ Q iffA(w) ≥ v for some (resp. all) w ∈ Σω. Nonemptiness (resp. universality)
is closely related to computing an automaton’s top value (resp. bottom value): A
is nonempty (resp. universal) with respect to v ∈ Q iff >A ≥ v (resp. ⊥A ≥ v).



4 M. Chalupa, T. A. Henzinger, N. Mazzocchi, N. E. Saraç

Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum

Nonemptiness check PTime
Universality check PSpace-complete Undecidable Open
Inclusion check PSpace-complete Undecidable Open

Equivalence check PSpace-complete Undecidable Open
Top value

computation PTime

Safety closure
construction O(1) PTime O(1)

Safety-liveness
decomposition O(1) PTime O(1)

Safety check O(1) PSpace-complete ExpSpace; PSpace-hard O(1)
Liveness check PSpace-complete

Constant-function
check PSpace-complete

Table 1: The complexity of performing the operations on the left column with respect
to nondeterministic automata with the value function on the top. The decidability
results in the top five rows are shown in [28,13] and undecidability in [16,12,27]. All
the results in the bottom five rows are shown in [6]. All the operations are computable
in PTime for deterministic automata.

An automaton A is included in (resp. equivalent to) an automaton B iff A(w) ≤
B(w) (resp. A(w) = B(w)) for all w ∈ Σω. An automaton A is constant iff there
exists c ∈ R such that A(w) = c for all w ∈ Σω. This problem is closely related
to safety and liveness of quantitative automata, as we discuss below.

Quantitative safety generalizes the boolean view by considering membership
hypotheses in the form of lower bound queries: a property is safe iff every wrong
membership hypothesis has a finite witness for the violation. Formally, a quan-
titative property Φ : Σω → D is safe iff for every w ∈ Σω and v ∈ D with
Φ(w) 6≥ v, there exists a finite prefix u ≺ w such that supw′∈Σω Φ(uw′) 6≥ v [25].
Moreover, an automaton A is safe iff the quantitative property defined by A is
safe. Given a quantitative property Φ : Σω → D, its safety closure is defined
as SafetyCl(Φ)(w) = infu≺w supw′∈Σω Φ(uw′) and is the least safety property
that bounds Φ from above [25]. As expected, a property Φ is safe iff Φ(w) =
SafetyCl(Φ)(w) for all w ∈ Σω, and we can compute the safety closure of an
automaton A—the automaton SafetyCl(A) that expresses the safety closure of
the property defined by A. While this characterization is useful for some classes
of quantitative automata, the equivalence problem is undecidable for LimInfAvg
and LimSupAvg automata. For these, the safety problem is still decidable by a
reduction to their constant-function problem [7].

Quantitative liveness extends the membership-based view: a quantitative
property Φ : Σω → D is live iff for every word (whose value is less than
> = supD) there exists a wrong membership hypothesis without a finite wit-
ness for the violation. Formally, a quantitative property Φ : Σω → D is live
iff for all w ∈ Σω, if Φ(w) < >, then there exists a value v ∈ D such that
Φ(w) 6≥ v and for all prefixes u ≺ w, we have supw′∈Σω Φ(uw′) ≥ v [25]. More-
over, an automaton A is live iff the quantitative property defined by A is live.
For the common classes of quantitative automata, deciding liveness reduces to



Automating the Analysis of Quantitative Automata with QuAK 5

inclusion

equivalence universality

bottom valuend,b constant function

liveness safetyla

safetyb

top value

safety closure inclusiond,la bottom valued

nonemptiness constant functiond

Fig. 2: Reductions of quantitative automata problems in QuAK. The subscript b
stands for basic (i.e., Val ∈ {Inf, Sup, LimInf, LimSup}), la for limit-average (i.e.,
Val ∈ {LimInfAvg, LimSupAvg}), d for deterministic, and nd for nondeterministic. For
example, checking safety of limit-average automata (safetyla) reduces to their constant-
function problem, which reduces to universality of LimInf automata.

the constant-function problem: an automaton A is live iff SafetyCl(A) is con-
stant [7]. Just like every boolean property is the intersection of its safety closure
and a liveness property, every quantitative property is the pointwise minimum
of its safety closure and a liveness property [25]. Recently, it was proved that all
the common classes of automata can be decomposed into its safety closure and
a liveness property [6]. Consider the automaton A, its safety closure B, and its
liveness part C as defined in Figure 1. In B, each strongly connected component
(SCC) of A is assigned the highest value achievable within the component, rep-
resenting the greatest among the lower bound hypotheses that cannot be refuted
by any finite prefix. The liveness part C consists of three components: the upper
part is a copy of A (ensuring C can have runs with the same value as A); the
middle part contains a >A-weighted copy of the highest-valued cycle in each
SCC (enabling C to achieve high-valued runs when A and B agree); and the
lower part includes a sink state looping with the lowest weight of A (allowing C
to “escape” the middle part and realize a value using the upper part).

3 QuAK Overview and Usage

QuAK is written in C++ using the standard library, and the source code is
available online [10]. It can be used both as a C++ library and a stand-alone
tool through the command-line interface – see our project repository for instruc-
tions. For Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg automata, QuAK
implements the operations listed in Table 1 and a monitoring procedure where
the monitor maintains the maximal and minimal possible values or a running
average. The problems handled in QuAK reduce to either the inclusion problem
or the top value computation, as shown in Figure 2. For the details of these
reductions, we refer the reader to [13,6,11].

We improve over QuAK’s initial version [11] in two ways. First, a safety-
liveness decomposition for nondeterministic automata is implemented, follow-
ing a new result that provides a decomposition for nondeterministic automata
with prefix-independent value functions, namely, LimInf, LimSup, LimInfAvg, and



6 M. Chalupa, T. A. Henzinger, N. Mazzocchi, N. E. Saraç

Word* witEmpt, witSafe;
Automaton* A = new Automaton("A.txt");
Automaton* B = safetyClosure(A, LimInfAvg);
Automaton* C = livenessComponent(A, LimInfAvg);
bool flagEmpt = A->isNonEmpty(LimInfAvg, 5, &witEmpt);
bool flagSafe = A->isSafe(LimInfAvg, &witSafe);

Fig. 3: An example usage of QuAK as a C++ library. The functions isNonEmpty and
isSafe now take an additional (optional) parameter for storing the stem and the period
of the ultimately periodic word witnessing the algorithms’ outputs.

LimSupAvg automata [6, Thm. 9.11]. Second, the inclusion-checking and the top-
value computation algorithms are extended with an option to return a witness
(for negative instance of inclusion and all instances of top value). Since all other
problems reduce to these two (see Figure 2), the ability to generate witnesses
makes QuAK more informative for analyzing quantitative automata. Inclusion
checking, a central component of QuAK, is implemented using an antichain-
based algorithm, extending FORKLIFT for Büchi automata [20], with details
and performance benefits discussed in [11]. As this algorithm systematically
searches for counterexamples, it inherently supports witness construction for
negative instances. Top value computation is based on graph-theoretic algo-
rithms [13], with witness generation achieved via backtracking pointers. These
improvements, along with other features of QuAK, were validated through unit
testing, random testing, and cross-validation with existing implementations.

QuAK reads and constructs automata from text files. Each automaton is
represented as a list of transitions of the format a : v, q -> p which encodes
a transition from state q to state p with letter a and weight v. The initial state
of the input automaton is the source state of the first transition in its text file.

Recall the nondeterministic limit-average automatonA and its safety-liveness
decomposition from Figure 1. The first three lines of the code snippet in Figure 3
construct the automata A, B, and C as presented in Figure 1. The nonemptiness
check returns false, and witEmpt points to an array storing u = hi and v = hi
as >A = A(hiω) = 6. Similarly, the safety check returns false and witSafe
points to an array storing u = v = lo as B(loω) = 4 and A(loω) = 2.

4 Conclusion

We presented an improved version of QuAK, our software tool for automat-
ing quantitative automata analysis, which extends the functionality introduced
in [11]. Future work aims to improve the tool’s scalability and applicability while
exploring more efficient verification methods. One promising avenue is the devel-
opment of symbolic approaches to efficiently manage large state spaces. Another
key direction involves extending the tool to support additional formalisms, such
as various types of discounted-sum automata [4], mean-payoff automaton expres-
sions [12], and nested quantitative automata [14]. In parallel with these efforts,
developing novel verification methods specifically tailored to the safety fragments
of expressive quantitative formalisms presents an exciting research direction.



Automating the Analysis of Quantitative Automata with QuAK 7

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993). https://doi.org/10.1006/INCO.1993.1025

3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taliro: A tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 17th
International Conference, TACAS 2011, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany,
March 26-April 3, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6605,
pp. 254–257. Springer (2011). https://doi.org/10.1007/978-3-642-19835-9_21

4. Boker, U.: Discounted-sum automata with real-valued discount factors. In:
Sobocinski, P., Lago, U.D., Esparza, J. (eds.) Proceedings of the 39th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Es-
tonia, July 8-11, 2024. pp. 15:1–15:14. ACM (2024). https://doi.org/10.1145/
3661814.3662090

5. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. Log. Methods Comput. Sci. 10(1) (2014). https://doi.org/10.2168/
LMCS-10(1:10)2014

6. Boker, U., Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Safety and liveness of
quantitative properties and automata (2024), https://arxiv.org/abs/2307.06016

7. Boker, U., Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Safety and liveness of
quantitative automata. In: Pérez, G.A., Raskin, J. (eds.) 34th International Con-
ference on Concurrency Theory, CONCUR 2023, September 18-23, 2023, Antwerp,
Belgium. LIPIcs, vol. 279, pp. 17:1–17:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPICS.CONCUR.2023.17

8. Boker, U., Henzinger, T.A., Otop, J.: The target discounted-sum problem. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6-10, 2015. pp. 750–761. IEEE Computer Society (2015). https:
//doi.org/10.1109/LICS.2015.74

9. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D.A. (eds.) Computer Aided Verification,
11th International Conference, CAV ’99, Trento, Italy, July 6-10, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1633, pp. 274–287. Springer (1999).
https://doi.org/10.1007/3-540-48683-6_25

10. Chalupa, M., Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: QuAK - Quantitative
Automata Kit (2024), maintained at https://github.com/ista-vamos/QuAK

11. Chalupa, M., Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Quak: Quantitative
automata kit (2024), https://arxiv.org/abs/2409.03569

12. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010 - Concurrency Theory, 21th International Conference, CONCUR 2010,
Paris, France, August 31-September 3, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6269, pp. 269–283. Springer (2010). https://doi.org/10.1007/
978-3-642-15375-4_19

13. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 23:1–23:38 (2010). https://doi.org/10.1145/1805950.1805953

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1006/INCO.1993.1025
https://doi.org/10.1006/INCO.1993.1025
https://doi.org/10.1007/978-3-642-19835-9\_21
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1145/3661814.3662090
https://doi.org/10.1145/3661814.3662090
https://doi.org/10.1145/3661814.3662090
https://doi.org/10.1145/3661814.3662090
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://doi.org/10.2168/LMCS-10(1:10)2014
https://arxiv.org/abs/2307.06016
https://doi.org/10.4230/LIPICS.CONCUR.2023.17
https://doi.org/10.4230/LIPICS.CONCUR.2023.17
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1109/LICS.2015.74
https://doi.org/10.1007/3-540-48683-6\_25
https://doi.org/10.1007/3-540-48683-6_25
https://arxiv.org/abs/2409.03569
https://doi.org/10.1007/978-3-642-15375-4\_19
https://doi.org/10.1007/978-3-642-15375-4_19
https://doi.org/10.1007/978-3-642-15375-4\_19
https://doi.org/10.1007/978-3-642-15375-4_19
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953


8 M. Chalupa, T. A. Henzinger, N. Mazzocchi, N. E. Saraç

14. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. ACM Trans.
Comput. Log. 18(4), 31:1–31:44 (2017). https://doi.org/10.1145/3152769

15. Chechik, M., Gurfinkel, A., Devereux, B.: chi-chek: A multi-valued model-checker.
In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, 14th Interna-
tional Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceed-
ings. Lecture Notes in Computer Science, vol. 2404, pp. 505–509. Springer (2002).
https://doi.org/10.1007/3-540-45657-0_41

16. Degorre, A., Doyen, L., Gentilini, R., Raskin, J., Torunczyk, S.: Energy and mean-
payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.) Computer
Science Logic, 24th International Workshop, CSL 2010, 19th Annual Conference
of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings. Lecture
Notes in Computer Science, vol. 6247, pp. 260–274. Springer (2010). https://doi.
org/10.1007/978-3-642-15205-4_22

17. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern proba-
bilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Veri-
fication - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-
28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427, pp.
592–600. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9_31, https:
//doi.org/10.1007/978-3-319-63390-9_31

18. Demaille, A., Duret-Lutz, A., Lombardy, S., Sakarovitch, J.: Implementation con-
cepts in vaucanson 2. In: Konstantinidis, S. (ed.) Implementation and Application
of Automata - 18th International Conference, CIAA 2013, Halifax, NS, Canada,
July 16-19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7982, pp.
122–133. Springer (2013). https://doi.org/10.1007/978-3-642-39274-0_12

19. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verifica-
tion, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6174, pp. 167–170. Springer
(2010). https://doi.org/10.1007/978-3-642-14295-6_17

20. Doveri, K., Ganty, P., Mazzocchi, N.: Forq-based language inclusion formal test-
ing. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th Interna-
tional Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13372, pp. 109–129. Springer (2022).
https://doi.org/10.1007/978-3-031-13188-2_6

21. Fijalkow, N., Bertrand, N., Bouyer-Decitre, P., Brenguier, R., Carayol, A., Fearn-
ley, J., Gimbert, H., Horn, F., Ibsen-Jensen, R., Markey, N., Monmege, B.,
Novotný, P., Randour, M., Sankur, O., Schmitz, S., Serre, O., Skomra, M.: Games
on graphs. CoRR abs/2305.10546 (2023). https://doi.org/10.48550/ARXIV.
2305.10546, https://doi.org/10.48550/arXiv.2305.10546

22. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, July 27-30, 1996. pp. 278–292. IEEE Computer Society (1996). https://doi.
org/10.1109/LICS.1996.561342

23. Henzinger, T.A., Ho, P.: HYTECH: the cornell hybrid technology tool. In: Antsak-
lis, P.J., Kohn, W., Nerode, A., Sastry, S. (eds.) Hybrid Systems II, Proceedings of
the Third International Workshop on Hybrid Systems, Ithaca, NY, USA, October
1994. Lecture Notes in Computer Science, vol. 999, pp. 265–293. Springer (1994).
https://doi.org/10.1007/3-540-60472-3_14

24. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Abstract monitors for quantitative
specifications. In: Dang, T., Stolz, V. (eds.) Runtime Verification - 22nd Inter-

https://doi.org/10.1145/3152769
https://doi.org/10.1145/3152769
https://doi.org/10.1007/3-540-45657-0\_41
https://doi.org/10.1007/3-540-45657-0_41
https://doi.org/10.1007/978-3-642-15205-4\_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-642-15205-4\_22
https://doi.org/10.1007/978-3-642-15205-4_22
https://doi.org/10.1007/978-3-319-63390-9\_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-39274-0\_12
https://doi.org/10.1007/978-3-642-39274-0_12
https://doi.org/10.1007/978-3-642-14295-6\_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-031-13188-2\_6
https://doi.org/10.1007/978-3-031-13188-2_6
https://doi.org/10.48550/ARXIV.2305.10546
https://doi.org/10.48550/ARXIV.2305.10546
https://doi.org/10.48550/ARXIV.2305.10546
https://doi.org/10.48550/ARXIV.2305.10546
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1007/3-540-60472-3\_14
https://doi.org/10.1007/3-540-60472-3_14


Automating the Analysis of Quantitative Automata with QuAK 9

national Conference, RV 2022, Tbilisi, Georgia, September 28-30, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13498, pp. 200–220. Springer (2022).
https://doi.org/10.1007/978-3-031-17196-3_11

25. Henzinger, T.A., Mazzocchi, N., Saraç, N.E.: Quantitative safety and liveness.
In: Kupferman, O., Sobocinski, P. (eds.) Foundations of Software Science and
Computation Structures - 26th International Conference, FoSSaCS 2023, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings. Lecture Notes in Com-
puter Science, vol. 13992, pp. 349–370. Springer (2023). https://doi.org/10.1007/
978-3-031-30829-1_17

26. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021. pp. 1–14. IEEE (2021). https://doi.org/10.1109/
LICS52264.2021.9470547

27. Hunter, P., Pauly, A., Pérez, G.A., Raskin, J.: Mean-payoff games with partial
observation. Theor. Comput. Sci. 735, 82–110 (2018). https://doi.org/10.1016/J.
TCS.2017.03.038, https://doi.org/10.1016/j.tcs.2017.03.038

28. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.)
Verification, Model Checking, and Abstract Interpretation, 8th International Con-
ference, VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4349, pp. 199–213. Springer (2007). https://doi.
org/10.1007/978-3-540-69738-1_14

29. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J.T., Harder, U. (eds.) Com-
puter Performance Evaluation, Modelling Techniques and Tools 12th Interna-
tional Conference, TOOLS 2002, London, UK, April 14-17, 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2324, pp. 200–204. Springer (2002).
https://doi.org/10.1007/3-540-46029-2_13

30. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), 134–152 (1997). https://doi.org/10.1007/S100090050010

31. Lombardy, S., Marsault, V., Sakarovitch, J.: Awali, a library for weighted automata
and transducers (version 2.3) (2022), software available at http://vaucanson-
project.org/Awali/2.3/

32. Lombardy, S., Poss, R., Régis-Gianas, Y., Sakarovitch, J.: Introducing VAUCAN-
SON. In: Ibarra, O.H., Dang, Z. (eds.) Implementation and Application of Au-
tomata, 8th International Conference, CIAA 2003, Santa Barbara, California, USA,
July 16-18, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2759, pp.
96–107. Springer (2003). https://doi.org/10.1007/3-540-45089-0_10

33. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, Joint International Conferences on Formal
Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3253,
pp. 152–166. Springer (2004). https://doi.org/10.1007/978-3-540-30206-3_12

34. Michaliszyn, J., Otop, J.: Approximate learning of limit-average automata. In:
Fokkink, W.J., van Glabbeek, R. (eds.) 30th International Conference on Concur-
rency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands.
LIPIcs, vol. 140, pp. 17:1–17:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPICS.CONCUR.2019.17

https://doi.org/10.1007/978-3-031-17196-3\_11
https://doi.org/10.1007/978-3-031-17196-3_11
https://doi.org/10.1007/978-3-031-30829-1\_17
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1007/978-3-031-30829-1\_17
https://doi.org/10.1007/978-3-031-30829-1_17
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1109/LICS52264.2021.9470547
https://doi.org/10.1016/J.TCS.2017.03.038
https://doi.org/10.1016/J.TCS.2017.03.038
https://doi.org/10.1016/J.TCS.2017.03.038
https://doi.org/10.1016/J.TCS.2017.03.038
https://doi.org/10.1016/j.tcs.2017.03.038
https://doi.org/10.1007/978-3-540-69738-1\_14
https://doi.org/10.1007/978-3-540-69738-1_14
https://doi.org/10.1007/978-3-540-69738-1\_14
https://doi.org/10.1007/978-3-540-69738-1_14
https://doi.org/10.1007/3-540-46029-2\_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/S100090050010
https://doi.org/10.1007/S100090050010
https://doi.org/10.1007/3-540-45089-0\_10
https://doi.org/10.1007/3-540-45089-0_10
https://doi.org/10.1007/978-3-540-30206-3\_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.4230/LIPICS.CONCUR.2019.17
https://doi.org/10.4230/LIPICS.CONCUR.2019.17


10 M. Chalupa, T. A. Henzinger, N. Mazzocchi, N. E. Saraç

35. Michaliszyn, J., Otop, J.: Minimization of limit-average automata. In: Zhou, Z.
(ed.) Proceedings of the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021. pp.
2819–2825. ijcai.org (2021). https://doi.org/10.24963/IJCAI.2021/388

36. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control.
4(2-3), 245–270 (1961). https://doi.org/10.1016/S0019-9958(61)80020-X

37. Yamaguchi, T., Hoxha, B., Nickovic, D.: RTAMT - runtime robustness moni-
tors with application to CPS and robotics. Int. J. Softw. Tools Technol. Transf.
26(1), 79–99 (2024). https://doi.org/10.1007/S10009-023-00720-3, https://doi.
org/10.1007/s10009-023-00720-3

https://doi.org/10.24963/IJCAI.2021/388
https://doi.org/10.24963/IJCAI.2021/388
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1007/S10009-023-00720-3
https://doi.org/10.1007/S10009-023-00720-3
https://doi.org/10.1007/s10009-023-00720-3
https://doi.org/10.1007/s10009-023-00720-3

	Automating the Analysis of Quantitative Automata with QuAK

