
Abstract Monitors for Quantitative
Specifications

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{tah,nmazzocc,esarac}@ist.ac.at

Abstract. Quantitative monitoring can be universal and approximate:
For every finite sequence of observations, the specification provides a
value and the monitor outputs a best-effort approximation of it. The
quality of the approximation may depend on the resources that are avail-
able to the monitor. By taking to the limit the sequences of specification
values and monitor outputs, we obtain precision-resource trade-offs also
for limit monitoring. This paper provides a formal framework for study-
ing such trade-offs using an abstract interpretation for monitors: For each
natural number n, the aggregate semantics of a monitor at time n is an
equivalence relation over all sequences of at most n observations so that
two equivalent sequences are indistinguishable to the monitor and thus
mapped to the same output. This abstract interpretation of quantitative
monitors allows us to measure the number of equivalence classes (or “re-
source use”) that is necessary for a certain precision up to a certain time,
or at any time. Our framework offers several insights. For example, we
identify a family of specifications for which any resource-optimal exact
limit monitor is independent of any error permitted over finite traces.
Moreover, we present a specification for which any resource-optimal ap-
proximate limit monitor does not minimize its resource use at any time.

Keywords: Abstract monitor · Approximate monitoring · Quantita-
tive monitoring · Monitor resources

1 Introduction

Online monitoring is a runtime verification (RV) technique [11] that, by sac-
rificing completeness, aims to lighten the burden caused by exhaustive formal
methods. A monitor watches an unbounded sequence f of observations, called
trace, one observation at a time. At each time n ≥ 0, it tries to provide in-
formation about the value assigned to f by the specification. For a boolean
specification P , after each trace prefix s, the monitor may output one of three
values: all infinite extensions of s satisfy P , violate P , or neither [15].

Quantitative specifications [21] generalize their boolean analogs by assigning
each trace f a value from some richer domain. For example, the boolean specifi-
cation Resp assigns true to f iff every observation req in f is eventually followed
by an observation ack in f , while the quantitative specification MaxRespTime

2 T. A. Henzinger et al.

assigns the least upper bound on the number of observations between each req
and the corresponding ack, or ∞ if there is no such upper bound.

In the limit monitoring of a quantitative specification Φ over a trace f , a
limit (e.g., lim sup, lim inf) of the infinite sequence of monitor outputs should
provide information about the value Φ(f) assigned to the trace. For example, a
“natural way to monitor” MaxRespTime is to have the monitor output, at each
time, the maximum of (i) the maximal response time so far and (ii) the time
since the least recent pending req, if there is a pending req. The lim sup (and
lim inf) of this infinite output sequence converges towards MaxRespTime.

In contrast to its boolean analog, the quantitative setting naturally supports
approximation. A monitor has error δ ≥ 0 if, for all infinite traces, the limit
of the output sequence is within δ of the specification value. In particular, this
leads to precision-resource trade-offs for quantitative monitors: The provisioning
of additional states, registers, or operations may reduce the error, and a larger
error tolerance may enable monitors that use fewer resources.

In this paper, we provide a formal framework for studying such precision-
resource trade-offs for an abstract definition of quantitative monitors. This ab-
stract framework can be instantiated, for example, by finite-state monitors or
register monitors, where a finite-state monitor remembers a bounded amount
of information about each trace prefix, and a register monitor remembers a
bounded number of integer values [32]. For us, an abstract monitor partitions,
at each time n, all prefixes of length up to n into a finite number of equiva-
lence classes such that if two prefixes s1 and s2 are equivalent, then the monitor
outputs the same value after observing s1 and s2. The number of equivalence
classes introduced at time n provides a natural measure for the resource use of
the abstract monitor after n observations.

In this setting, where the resource use of a monitor is measured, we also want
to measure the precision of a monitor. To define the precision of a monitor after a
finite trace prefix, we need to enrich our definition of quantitative specifications:
We let a quantitative specification assign values not only to infinite traces but
also to finite traces. Indeed, many specification values for infinite traces are
usually defined as limits [37]. For example, what we called above the “natural
way to monitor” MaxRespTime using two counters is, in fact, the usual formal
definition of the quantitative specification MaxRespTime.

Once both specifications and monitors assign values to all finite traces, there
is a natural definition for the precision of a monitor: At each time n, the prompt-
error is the maximal difference between the monitor output and the specification
value over all finite traces of length up to n. Furthermore, the limit-error is the
least upper bound on the difference between the limit of monitor outputs and the
limit of specification values over all infinite traces. Note that if the prompt-error
of a monitor is 0, then so is the limit-error, but not necessarily vice versa. An
exact-value monitor (i.e., a monitor with prompt-error δ = 0) implements the
specification as it is defined. In contrast, an approximate monitor (i.e., a monitor
with prompt-error δ > 0) of the same specification may use fewer resources.

Abstract Monitors for Quantitative Specifications 3

An approximate monitor may still achieve limit-error 0, which is a situation of
particular interest that we study.

Given an abstract monitor, one way to obtain a new monitor that uses fewer
resources use is to merge some equivalence classes, and one way to increase
the precision is to split some equivalence classes. However, this naive approach
toward reaching a desired precision or resource use is not always the best. For
an approximate monitor with a given prompt-error and limit-error, the goal
is resource-optimality, i.e., minimizing the resource use as much as the error
threshold allows. We will see that merging the equivalence classes of a given
monitor may not yield a resource-optimal one.

The limit-error of a monitor is bounded by its prompt-error. We also inves-
tigate the case where we require a certain limit-error while leaving the prompt-
error potentially unbounded. We will see that allowing arbitrary prompt-error
may not permit the monitor to save resources if the desired limit-error is fixed.
We say that such specifications have resource-intensive limit behavior. In fact,
MaxRespTime displays resource-intensive limit behavior. Other examples include
a subclass of reversible specifications. Reversibility is a notion from automata
theory characterized by the specification being realizable with a finite-state au-
tomaton that is both forward and backward deterministic. A similar notion,
generalized to the quantitative setting, can be introduced in our framework,
allowing an abstract monitor to process an infinite trace in a two-way fashion.

Overview Section 2 formalizes the framework of abstract monitors and provides
insights on relations between basic notions such as resource use and precision.

Section 3 focuses on monitoring with bounded error over finite traces. First, in
Subsection 3.1, we show that the exact-value monitor over finite traces is unique
and resource-optimal for every specification. Additionally, for resource-optimal
approximate monitors, we prove: (i) they are not unique in Subsection 3.1,
(ii) they do not necessarily follow the structure of the exact-value monitor in
Subsection 3.2, and (iii) they do not necessarily minimize their resource use at
each time in Subsection 3.2. Then, in Subsection 3.3, we study precision-resource
trade-off suitability: We exhibit (i) a specification for which we can arbitrarily
improve the resource use by damaging precision, and (ii) another for which we
arbitrarily improve the precision by damaging the resource use.

Section 4 focuses on monitoring without error on infinite traces. In particu-
lar, in Subsection 4.1 we provide a condition for identifying specifications with
resource-intensive limit behavior, for which having zero limit-error prevents the
trade-off between resource use and error on finite traces. This condition cap-
tures two paradigmatic specifications: (i) maximal response-time and (ii) average
response-time. Finally, in Subsection 4.2 we investigate reversible specifications,
which can be implemented in a manner both forward and backward determinis-
tic. A subclass of reversible specifications have resource-intensive limit behavior,
which we demonstrate through the average ping specification.

Section 5 concludes the paper and addresses future research directions our
framework offers.

4 T. A. Henzinger et al.

Related work In the boolean setting, several notions of monitorability have
been proposed over the years [15,30,34]. Much of the theoretical efforts have fo-
cused on regular specifications [2,14,46], although some proposed more expressive
models [9,12,26]. We refer the reader to [10] for coverage of these and more.

Verification of quantitative specifications [21,41] have received significant at-
tention, especially in the probabilistic setting [17,20,33]. In the context of RV, the
literature on specifications with quantitative aspects features primarily metric
temporal logic and signal temporal logic [38,40,43,44,45]. Other efforts include
processing data streams with a focus on deciding their properties at runtime [5,6]
and an extension of weighted automata with monitor counters [22]. None of these
works focus on monitoring quantitative specifications with approximate verdicts
or the relation between monitorability and monitor resources.

Approximate methods have been used in verification for many years [25,39].
Beyond the boolean setting, such approaches have appeared in the context
of sensor networks for approximating aggregate functions in a distributed set-
ting [24,49,50], in approximate determinization or minimization of quantitative
models of computation [7,16,35], and also in online algorithms [3].

To the best of our knowledge, the use of approximate methods in monitoring
mainly concentrates on the specification rather than taking approximateness as
a monitor feature and studying the quality of monitor verdicts. In predictive or
assumption-based monitoring [23,54] and for monitoring hyperproperties [51],
an over-approximation of the system under observation is used as an assump-
tion to limit the set of possible traces [36]. Similarly, in runtime quantitative
verification [18,47], the underlying probabilistic model of the system is approx-
imated and continually updated. For monitoring under partial observability, [4]
describes an approach to approximate the given specification for minimizing the
number of undetected violations. In the branching-time setting, [1] uses a mon-
itorable under- or over-approximation of the given specification to construct an
“optimal” monitor. Nonetheless, a form of distributed and approximate limit
monitoring for spatial specifications was studied in [8]. None of these works
consider approximateness as a monitor property to study the relation between
monitor resources and the quality of its verdicts.

Recently, [32] introduced a concrete monitor model with integer-valued reg-
isters and studied their resource needs. This model was later used for limit mon-
itoring of statistical indicators of traces under probabilistic assumptions [31]. A
general framework for approximate limit monitoring of quantitative specifica-
tions was proposed in [37]. However, that framework focuses exclusively on limit
behaviors and on specific monitor models such as finite automata and register
machines, thus allowing only limited precision-cost analyses. The main innova-
tions of the present work over previous work are twofold. First, we abstract the
monitor model and its resource use away from specific machine models. Second,
by introducing prompt-errors, we study the resource use of monitors over time
and relate this to the monitoring precision over time. This more nuanced frame-
work enables a more fine-grained analysis and comparison of different monitors
for the same specification concerning their precision and resource use.

Abstract Monitors for Quantitative Specifications 5

2 Definitional Framework

Let Σ = {a, b, . . .} be a finite alphabet of observations. A trace is finite or
infinite sequence of observations, which we respectively denote by s, r, t ∈ Σ∗

and f, g ∈ Σω. Given two traces s ∈ Σ∗ and w ∈ Σ∗ ∪Σω, we denote by s ≺ w
(resp. s � w) that s is a strict (resp. non-strict) prefix of w. For n ∈ N we define
Σ≤n = {s ∈ Σ∗ | |s| ≤ n} where |s| refers to the length of s. Given a ∈ Σ and
s ∈ Σ∗, we denote by |s|a the number of occurrences of a in s.

We denote by N the set of non-negative integers and by R the set of real
numbers. We also consider N = N ∪ {+∞} and R = R ∪ {−∞,+∞}.

A binary relation ∼ over Σ∗ is an equivalence relation when it is reflexive,
symmetric, and transitive. For a given equivalence relation ∼ over Σ∗ and a
finite trace s ∈ Σ∗, we denote by [s]∼ the equivalence class of ∼ in which
s belongs. When ∼ is clear from the context, we write [s] instead. A right-
monotonic relation ∼ over Σ∗ fulfills s1 ∼ s2 ⇒ s1r ∼ s2r for all s1, s2, r ∈ Σ∗.

We use � and ♦ to denote the linear temporal logic (LTL) operators al-
ways and eventually, respectively. See [48] for interpretation of LTL operators
on infinite traces, and [27,19,29] on finite traces.

2.1 Quantitative specifications

A limit-measure is a function from Rω to R. Given an infinite sequence of real
numbers x = x1x2 . . . , we define lim inf(x) = limn 7→+∞ inf{xi | i ≥ n} and
lim sup(x) = limn 7→+∞ sup{xi | i ≥ n}. Whenever lim inf(x) = lim sup(x) for a
given sequence x, we simply write lim(x). A value function π : Σ∗ → R associates
a value to each finite trace.

Definition 1 (specification). A specification extends a value function by con-
straining its limit behavior. Syntactically, it is a tuple Φ = (π, `) where π : Σ∗ →
R is a value function and ` is a limit-measure. Semantically, it is a function
defined by [[Φ]](s) = π(s) when s ∈ Σ∗ and [[Φ]](f) = `(π(f)) when f ∈ Σω, where
π(f) = (π(si))i∈N is a sequence over the prefixes si ≺ f of increasing length i.

Together with a given specification Φ, we define the right-monotonic equiv-
alence relation ∼∗Φ as follows. For all s1, s2 ∈ Σ∗ we have s1 ∼∗Φ s2 iff π(s1r) =
π(s2r) holds for all r ∈ Σ∗.

We define below the discounted response specification. Throughout the sec-
tion, we will use this specification as a running example.

Example 2. Let Σ = {req, ack, other} and consider the LTL response speci-
fication P = �(req → ♦ack). Let 0 < λ < 1 be a discount factor. We define
DiscResp(s) = 1 if s ∈ P , and DiscResp(s) = λn otherwise, where n = |s|−|r| and
r ≺ s is the longest prefix of s with r ∈ P . We define ΦDR = (DiscResp, lim sup),
the discounted response specification. Intuitively, ΦDR assigns each finite trace a
value that shows how close the system behaves to P such that, at the limit, it
denotes whether the infinite behavior satisfies P or not.

6 T. A. Henzinger et al.

Now, take two traces s, r ∈ Σ∗. We claim that s ∼∗ΦDR
r iff either (i) both

traces have no pending request or (ii) both have a request pending for the same
number of steps. First, we assume s ∼∗ΦDR

r holds and note that we must have
ΦDR(st) = ΦDR(rt) for every t ∈ Σ∗. Then, we eliminate the cases other than (i)
and (ii) as follows. If, w.l.o.g., s ∈ P and r /∈ P , then ΦDR(r) < ΦDR(s) = 1, thus
s �∗ΦDR

r. If, w.l.o.g., s has a request pending for i steps and r for j > i steps,
then ΦDR(r) = λj < λi = ΦDR(s), thus s �∗ΦDR

r. The other direction is similar.

2.2 Abstract monitors
We are now ready to present our abstract definition of quantitative monitors.
Definition 3 (monitor). A monitor M = (∼, γ) is a tuple consisting of a
right-monotonic equivalence relation ∼ on Σ∗ and a function γ : (Σ∗/ ∼)→ R.
Let δfin, δlim ∈ R be error thresholds. We say thatM is a (δfin, δlim)-monitor for
a given specification Φ = (π, `) iff
– |π(s)− γ([s])| ≤ δfin for all s ∈ Σ∗, and
– |`(π(f))− `(γ([f]))| ≤ δlim for all f ∈ Σω.

where γ([f]) = (γ([si]))i∈N is a sequence over the prefixes si ≺ f of increasing
length i. We say thatM has a prompt-error of δfin and a limit-error of δlim.

We conveniently write M(s) = γ([s]) when s ∈ Σ∗ and M(f) = `(γ([f]))
when f ∈ Σω.

Observe that, for every specification, there is an obvious monitor that imi-
tates exactly the specification, which we define as follows.
Definition 4 (exact-value monitor). Let Φ = (π, `) be a specification. The
exact-value monitor of Φ is defined asMΦ = (∼∗Φ, s 7→ π(s)).

A monitor for a given specification is approximate when it differs from the
specification’s exact-value monitor. Below we demonstrate the exact-value mon-
itor and an approximate monitor for the discounted response specification.
Example 5. Recall from Example 2 the discounted response specification ΦDR.
Clearly, its exact-value monitor isMΦDR = (∼∗ΦDR

, γΦDR) where γΦDR([s]) = ΦDR(s)
for all s ∈ Σ∗. Let us define another monitor M = (∼, γ) such that s ∼ r iff
either s, r ∈ P or s, r /∈ P for every s, r ∈ Σ∗; and γ([s]) = 1 if s ∈ P , and
γ([s]) = 0 if s /∈ P . Note that for every f ∈ Σω we have f ∈ P iff infinitely many
prefixes of f belong to P , therefore M has no limit-error. However, it yields a
prompt-error of λ since it immediately outputs 0 instead of discounting on finite
traces. Hence,M is a (λ, 0)-monitor for ΦDR.

Next, we prove that our definition constrains monitors not to make two equiv-
alent traces too distant.
Proposition 6. Let M = (∼, γ) be a (δfin, δlim)-monitor for the specification
Φ = (π, `). For all s1, s2 ∈ Σ∗, if s1 ∼ s2, then |Φ(s1)− Φ(s2)| ≤ 2δfin.
Proof. By definition of M we have that −δfin ≤ π(s1) − γ([s1]) ≤ δfin as well
as δfin ≥ −π(s2) + γ([s2]) ≥ −δfin. If s1 ∼ s2 then γ([s1]) = γ([s2]) and thus
−2δfin ≤ π(s1)− π(s2) ≤ 2δfin. ut

Abstract Monitors for Quantitative Specifications 7

2.3 Resource use of abstract monitors

As we demonstrated above, quantitative monitors may have different degrees of
precision. A natural question is whether monitors with different error thresholds
use a different amount of resources. To answer this question in its generality, we
consider the following model-oblivious notions of resource use.

Definition 7 (resource use). LetM = (∼, γ) be a monitor. We consider two
notions of resource use forM defined as functions from N to N. We define step-
wise resource use as rn(M) = |Σ≤n/∼| − |Σ<n/∼|, and total resource use as
Rn(M) =

∑n
i=0 ri(M) = |Σ≤n/∼|.

Given two monitorsM1 andM2, we compare their resource use as follows.
We write r(M1) < r(M2) when there exists n0 ∈ N such that for every n ≥ n0
we have rn(M1) < rn(M2). In particular, when it holds for n0 = 1, we write
r(M1)� r(M2). We define R(M1) < R(M2) and R(M1)� R(M2) similarly.
Fig. 1 shows how these notions relate. Moreover, definitions of r(M1) ∝ r(M2)
and R(M1) ∝ R(M2) for ∝ ∈ {≤,�, >,�,≥,�} are as expected.

The monitor M1 uses at most as many resources as M2 when we have
r(M1) � r(M2). If we further have rn(M1) < rn(M2) for some n ≥ 1, then
M1 uses fewer resources than M2. We similarly define the cases for using at
least as many and more resources.

Given a specification Φ and a (δfin, δlim)-monitor M for Φ, we say that M
is resource-optimal for Φ when for every (δfin, δlim)-monitor M′ for Φ we have
r(M) � r(M′), i.e., M uses at most as many resources as any other monitor
M′ with the same error thresholds.

Example 8. Recall from Examples 2 and 5 the discounted response specifica-
tion ΦDR, its exact-value monitor MΦDR , and the (λ, 0)-monitor M. We claim
that M uses fewer resources than MΦDR . To show this, we first point out that
r0(M) = r1(M) = 1 and rn(M) = 0 for every n ≥ 2. However, rn(MΦDR) ≥ 1
for every n ≥ 0 because at each step the trace reqn is not equivalent to any
shorter trace. Therefore, whileMΦDR is an infinite-state monitor,M is a finite-
state monitor, and r(M) < r(MΦDR).

Finally, we conclude the description of our framework by proving the im-
plications in Fig. 1 to establish how different ways to compare resource use of
monitors relate as well as a refinement property for resource-optimal monitors.

Proposition 9. For every monitorM1 andM2 the implications in Fig. 1 hold.

r(M1)� r(M2) r(M1) < r(M2)

R(M1)� R(M2) R(M1) < R(M2)

Fig. 1. Implications between the comparisons of resource use.

8 T. A. Henzinger et al.

Proposition 10. Let Φ be a specification and δfin, δlim be two error thresholds.
Given (δfin, δlim)-monitorsM1 = (∼1, γ1) andM2 = (∼2, γ2) for Φ. If ∼1 ⊆ ∼2
andM1 is resource-optimal, then ∼1 = ∼2. Thus,M2 is also resource-optimal.

We remark that our definitional framework can be instantiated by existing
monitor models, e.g., finite state automata [15] or register monitors [32,37]. More
concretely, let us consider the discounted response specification ΦDR from Ex-
ample 2. Its exact-value monitorMΦDR from Example 5 can be implemented by
a register monitor that stores the value n in its single register while checking for
the LTL specification P using its finite-state memory. On the other hand, the
monitorM from Example 5 can be implemented by a finite state machine.

3 Approximate Prompt Monitoring

The original purpose of a monitor is to provide continuous feedback about the
system status with respect to the specification [13,30]. Focusing only on limit
monitoring may allow an unbounded prompt-error and thus fail to fulfill this
task. In this section, we consider prompt monitoring, i.e., the case where the
monitor performs bounded prompt-error. First, we remark that considering a
bounded prompt-error implicitly bounds the limit-error by definition.

Fact 11. Let Φ be a specification and δfin, δlim ∈ R be error thresholds. If M
is a (δfin, δlim)-monitor for Φ, then it is also a (δfin, x)-monitor for Φ where
x = min{δfin, δlim}.

3.1 Uniqueness of resource-optimal prompt monitors

The exact-value monitor is arguably the most natural monitor for a given spec-
ification. In fact, it is the unique error-free monitor that is resource-optimal.

Theorem 12. Let Φ be a specification, and δ ∈ R be an error threshold. Then,
MΦ is the unique resource-optimal (0, δ)-monitor for Φ.

Proof. Let Φ = (π, `). ConsiderM = (∼, γ) as a resource-optimal (0, δ)-monitor
for Φ. We get ∼ ⊆ ∼∗Φ thanks to the following implications.

s1 ∼ s2 =⇒ ∀r ∈ Σ∗, s1r ∼ s2r (right-monotonicity)
=⇒ ∀r ∈ Σ∗, γ([s1r]) = γ([s2r]) (definition)
=⇒ ∀r ∈ Σ∗, π(s1r) = π(s2r) (prompt-error 0)
=⇒ s1 ∼∗Φ s2 (definition)

On the one hand, we have that ∼ = ∼∗Φ by Proposition 10. On the other hand,
we have that γ([s]) = π(s) for all s ∈ Σ∗ since the prompt-error threshold is 0.
As a direct consequence,M =MΦ. ut

Abstract Monitors for Quantitative Specifications 9

Φ = (π, lim) where:

π : s 7→



0 if s = ε

3x if s = a

5x if s = b

7x if s = c

10x if s ∈ ΣaΣ∗

10x+ y if s ∈ ΣbΣ∗

10x+ 2y if s ∈ ΣcΣ∗

5x0

3x

7x

10x+y

10x

10x+2y

4x 10x+ y

6x 10x+ y

a

b

c

a

a

a
b

b

b
c

c

c

Σ

Σ

Σ

Fig. 2. A specification Φ over Σ = {a, b, c} where x > 0 and y ≤ x, and two resource-
optimal (x, y)-monitors for Φ shown on top of the exact-value monitorMΦ. As indicated
by the output values on the dotted and dashed rectangles, the approximate monitors
merge some equivalence classes ofMΦ to save resources at the cost of losing precision.

Unfortunately, the uniqueness of resource-optimal monitors does not neces-
sarily hold once we allow erroneous monitor verdicts. For instance, Fig. 2 shows
on the left a specification Φ parameterized by x and y, together with its exact-
value monitor MΦ on the right. In addition, the figure highlights two ways to
make ∼Φ coarser to obtain distinct resource-optimal (x, y)-monitors for Φ.

Proposition 13. For all x > 0 and y ≤ x there exists a specification Φ that
admits multiple resource-optimal (x, y)-monitors.

3.2 Structure of resource-optimal prompt monitors

Regardless of the uniqueness, one can ask whether making ∼Φ coarser always
yields a resource-optimal approximate monitor. Here, we answer this question
negatively. In particular, Fig. 3 shows on the left a specification Φ and on the
right a resource-optimal (1, 0)-monitorM = (∼, γ) for Φ with ab � ba, although
ab ∼∗Φ ba.

Proposition 14. There exists a (1, 0)-monitor M = (∼, γ) for some specifi-
cation Φ such that for every other (1, 0)-monitor M′ = (∼′, γ′) we have that
∼Φ ⊆ ∼′ implies r(M)� r(M′).

Φ = (π, lim) where:

π : s 7→



0 if s = ε

3 if s = c

6 if s = a or s = ca

9 if s = b or s = cb

12 if s = cab

14 if s = ab or s = ba

16 if s = cba

19 otherwise

30

6

9

13

15

19

a

b

c

b

a

a

b

c, a

c, b

c

Σ

Σ

Σ

Fig. 3. A specification for which no (1, 0)-monitor thatMΦ refines is resource-optimal,
and the witnessing resource-optimal approximate monitor that splits an equivalence
class of the specification.

10 T. A. Henzinger et al.

0 7

5

9

15

13

17

23

π(an−1)−π(bn−1a)
2

π(bn−1)−π(an−1b)
2

π(an)+π(bn)
2

a, b

a

b

a

a

b

b

b

a

a

b

b

a

a

b

b a

Fig. 4. A resource-optimal (1,1)-monitor for the specification Φ of Proposition 15 that
never minimizes its step-wise resource use rn (black). Attempting to minimize rn at
each step n results in taking an and bn as equivalent, but breaking the equivalence at
step n+ 1 as the prompt-error bound would be violated otherwise (gray).

We established that the structure of the exact-value monitor does not nec-
essarily provide insights into finding a resource-optimal approximate monitor.
In fact, as we demonstrate in Fig. 4, there exist a specification such that its
resource-optimal (1, 1)-monitorM never minimizes the resource use ri(M).

Proposition 15. There exists a specification Φ admitting a (1, 1)-monitorM =
(∼, γ) such that for all equivalence relations ≈ over Σ∗ and n ∈ N we have that
|Σ≤n/∼| is strictly greater than

min
{
|Σ≤n/≈| ∀s1, s2 ∈ Σ≤n : s1 ≈ s2 ⇒

∧ ∀r ∈ Σ∗ : s1r ≈ s2r
|Φ(s1)− Φ(s2)| ≤ 1

}
.

Proof. Let Φ = (π, lim sup) be a specification from Σ = {a, b} to N where π is
defined as follows.

π : s 7→



8|s| if s ∈ b∗

8|s| − 16k + 4 if s ∈ (b+a+)k for some k ≥ 1
8|s| − 16k + 2 if s ∈ (b+a+)kb+ for some k ≥ 1
8|s| − 2 if s ∈ a+

8|s| − 16k + 10 if s ∈ (a+b+)k for some k ≥ 1
8|s| − 16k − 4 if s ∈ (a+b+)ka+ for some k ≥ 1

Let n ∈ N. The key argument is that it is beneficial to put an and bn in the same
equivalence class for minimizing rn since |Φ(an)−Φ(bn)| = 2 and since no other
trace in Σ≤n admits a value close to either Φ(an) or Φ(bn). However, once we
consider traces of length n+1, we introduce several values close to Φ(an) as well
as Φ(bn), but not both at the same time. Therefore, to minimize the resource
use rn+1 while maintaining the prompt-error bound of 1, it becomes beneficial
to put an and bn in distinct equivalence classes. ut

3.3 Unbounded precision-resource trade-offs for prompt monitors

In this subsection, we exhibit specifications admitting an infinite sequence of
monitors that trade precision and resource use. First, we investigate the maximal

Abstract Monitors for Quantitative Specifications 11

response-time specification by demonstrating how a monitor can save more and
more resources by increasing both its prompt- and limit-error.

Example 16. Let Σ = {req, ack, other} and consider the usual LTL response
specification P = �(req → ♦ack). We define CurResp(s) = 0 if s ∈ P , and
CurResp(s) = |s| − |r| otherwise, where r ≺ s is the longest prefix with r ∈ P .
Now, let MaxResp(s) = supr�s CurResp(r) and define ΦMR = (MaxResp, lim),
which we call the maximal response-time specification. Note that CurResp out-
puts the current response-time for a finite trace, and MaxResp outputs the max-
imum response-time so far.

Consider the monitorM = (∼, γ) that counts the response time when there
is an open req, but only stores an approximation of the maximum when an
ack occurs. More explicitly, let ∼ and γ be such that we have the following:
M(s) = 5k + 2 if s ∈ P , where k ∈ N satisfies 5k ≤ MaxResp(s) < 5(k + 1); and
M(s) = max{M(r),CurResp(s)} otherwise, where r ≺ s is the longest prefix
with r ∈ P . We claim that M is a (2, 2)-monitor for ΦMR. First, observe that
whenever there is no pending request, i.e., s ∈ P , the monitor has a prompt-error
of at most 2 by construction. Indeed, MaxResp(s) ∈ {5k+i | i ∈ {0, 1, 2, 3, 4}}. In
the case of a pending request, i.e., s /∈ P , there is a prompt-error only when the
monitor’s approximation of the maximum-so-far is not replaced by the current
response time. Again, by construction, we can bound this error by 2. Intuitively,
M achieves this approximation by merging in ∼ some equivalence classes of ∼∗ΦMR
where there are no pending requests. One can thus verify that r(M) < r(MΦMR).

The construction described in Example 16 can be generalized to identify a
precision-resource trade-off with an infinite hierarchy of approximate monitors.

Theorem 17. For all δ ∈ N, there exists a (δ, δ)-monitor Mδ for the maximal
response-time specification. Furthermore, r(Mi) < r(Mj) for all i > j, andM0
is the exact-value monitor.

Proof. Let ΦMR = (MaxResp, lim) be the maximal response-time specification
as introduced in Example 16. Let δ ∈ N and s ∈ Σ∗. If s does not have
a pending request, we define Mδ(s) = k(2δ + 1) + δ where k ∈ N satisfies
k(2δ+ 1) ≤ MaxResp(s) < (k+ 1)(2δ+ 1). Otherwise, if s has a pending request,
we define Mδ(s) = max{Mδ(r),CurResp(s)} where r ≺ s is the longest prefix
with no pending request. We construct the (δ, δ)-monitorMδ for ΦMR as in Ex-
ample 16. In particular, M0 is the exact-value monitor. Indeed, δ = 0 implies
Mδ(s) = k = MaxResp(s) when s does not have a pending request, and other-
wiseMδ(s) = supr�s CurResp(r) = MaxResp(s) by definition. For all i > j, the
monitorMi partitions the traces with no pending requests into sets of cardinal-
ity 2i+1 whileMj does so using sets of cardinality 2j+1. Then, the equivalence
relation used byMi is coarser than that ofMj , and thus r(Mi) < r(Mj). ut

Note that, exceptM0, the monitors given by Theorem 17 have non-zero limit-
error. We explore in Section 4 the specifications for which having fewer resources
than the exact-value monitor forces a non-zero limit-error. Moreover, we show
in Example 25 that the maximal response-time is one of these specifications.

12 T. A. Henzinger et al.

Next, we investigate the server/client specification by demonstrating how a
monitor can be more and more precise by increasing its resource use.

Example 18. Consider a server that receives requests and issues acknowledg-
ments. The number of simultaneous requests the system can handle is deter-
mined at runtime through a preprocessing computation. We describe a speci-
fication that, at its core, requires that every request is acknowledged and the
server never has more open requests than it can handle. In particular, until the
server is turned off, the specification assigns a value to each finite trace, denoting
the likelihood and criticality of a potential immediate violation.

Let Σ = {req, ack, other, off} be an alphabet, λ ∈ (0, 1) be a discount
factor, and Λ > 0 be an integer denoting the request threshold. For every s ∈ Σ∗
we denote by NumReq(s) the number of pending requests in s. We define the
server/client specification ΦSC = (π, lim) where π is defined as follows.

– π(s) = 0 if s contains an occurrence of off,
– π(s) = NumReq(s)λ|s| if NumReq(r) ≤ Λ for all r � s, and otherwise
– π(s) = NumReq(r)λ|r| where r � s is the shortest with NumReq(r) > Λ.

Theorem 19. For every positive integer Λ and real number 0 < δ ≤ Λ, there
exists a (δ, δ)-monitor Mδ for the server/client specification ΦSC. Furthermore,
Mδ uses finitely many resources.

Proof. Let Λ and δ be as above, and consider the set X we define as follows:
X = {s ∈ Σ∗ | supr1∈Σ∗{π(sr1)} − infr2∈Σ∗{π(sr2)} ≥ δ}. Note that X is
finite. On the one hand, only a finite number of prefixes of a trace admitting an
occurrence of off can belong to X since δ > 0 and by definition of ΦSC. On the
other hand, only a finite number of prefixes of a trace in which no off occurs can
belong to X since the discounting forces the value of ΦSC to converge to 0. We
constructMδ such that, if the trace belongs to X, it outputs the value given by
the specification, otherwise it outputs the value of the shortest prefix that does
not belong to X. In other words,Mδ does not distinguish traces with the same
prefix not belonging to X and thus admits at most 2|X| equivalence classes. ut

4 Approximate Limit Monitoring

In contrast to Section 3 where we tackle the limit monitoring problem indirectly
with a bounded prompt-error, here we bound the limit-error directly and allow
arbitrary prompt-error.

Example 20. Let Φ = (π, lim inf) be a specification overΣ = {safe, danger, off}
such that π(s) = 2|r| if s does not contain off, where r is the longest suffix of
s of the form safe∗, and π(s) = |s|danger otherwise. Intuitively, Φ assigns each
trace a confidence value while the system is on and how many times the system
was in danger otherwise. We describe an approximate monitor with unbounded
prompt-error and bounded but non-zero limit-error.

Abstract Monitors for Quantitative Specifications 13

Let ∼ be a right-monotonic equivalence relation and γ an output function
such that M = (∼, γ) satisfies the following: M(s) = ∞ when s has no off
and ends with safe, M(s) = 0 when s has no off and ends with danger,
and M(s) = 9k + 4 otherwise, where k ∈ N satisfies 9k ≤ |s|danger < 9(k + 1).
Notice that the monitor partitions N into intervals and takes traces with a “close
enough” number of danger’s equivalent – as in Example 16. It is easy to see that
M is a (∞, 4)-monitor for Φ.

At its core, the limit-error threshold of a monitor is a theoretical guarantee
since we cannot compute arbitrary limit-measures at runtime. Then, as a start-
ing point, we insist that the monitor has zero limit-error, which is a reasonable
requirement given that we allow unbounded prompt-error. In this case, the mon-
itoring is still potentially approximate since we allow any error on finite traces.
To talk about specifications for which saving resources by allowing prompt-error
is not possible, we define the following notion.

Definition 21 (resource-intensive limit behavior). A specification Φ has
resource-intensive limit behavior iff its exact-value monitor MΦ is a resource-
optimal (δ, 0)-monitor for any δ ≥ 0.

First, we identify a sufficient condition for a specification to be resource-
intensive limit behavior. Then, we present reversible specifications and show a
subclass of them that satisfy our condition.

4.1 Specifications with resource-intensive limit behavior

Let Φ = (π, `) be a specification and recall the equivalence ∼∗Φ that, for every
s1, s2 ∈ Σ∗, is defined as s1 ∼∗Φ s2 iff π(s1r) = π(s2r) holds for all r ∈ Σ∗. To
investigate the limit behavior of a specification, we define the following equiva-
lence relation: for every s1, s2 ∈ Σ∗ we have s1 ∼ωΦ s2 iff `(π(s1f)) = `(π(s2f))
holds for all f ∈ Σω. Intuitively, traces with indistinguishable limit behavior are
equivalent according to this relation. As a direct consequence of Fact 11, the
following holds.

Fact 22. For every specification Φ, we have that ∼∗Φ ⊆ ∼ωΦ.

However, the converse does not necessarily hold, as we demonstrate with
Example 23 below. We will show later that, when it holds, the specification has
resource-intensive limit behavior.

Example 23. Recall the discounted response specification ΦDR in Example 2, and
that for all s, r ∈ Σ∗, we have s ∼∗ΦDR

r iff either (i) both traces have no pending
req or (ii) both have a req pending for the same number of steps.

Let s, r ∈ Σ∗. We claim s ∼ωΦDR
r iff either both traces have a pending request

or both do not. Indeed, if s has a pending request and r does not, then we have
Φ(s.otherω) = 0 but Φ(r.otherω) = 1. For the other direction, simply observe
that if s ∼ωΦDR

r then Φ(s.otherω) = Φ(r.otherω), but the equality does not hold
if s has a pending request and r does not (or vice versa). Having these charac-
terizations at hand, we immediately observe that s ∼∗ΦDR

r implies s ∼ωΦDR
r.

14 T. A. Henzinger et al.

Notice that the approximate monitorM for ΦDR we constructed in Example 5
follows exactly the limit behavior of the specification. We were able to take
advantage of the fact that ∼ωΦDR

is coarser than ∼∗ΦDR
and designM such that it

saves resources by allowing some prompt-error but no limit-error. We generalize
this observation by showing that we could not have designed such a monitor if
these equivalences had overlapped.

Theorem 24. Let Φ be a specification. If ∼∗Φ = ∼ωΦ then Φ has resource-intensive
limit behavior.

Proof. Let M = (∼, γ) be a resource-optimal (δ, 0)-monitor for Φ. Suppose to-
wards contradiction that ∼∗Φ = ∼ωΦ and MΦ is not resource-optimal for Φ. In
particular ∼ 6= ∼∗Φ. Since the limit-error threshold is 0, we get ∼ ⊆ ∼∗Φ by the
following.

s1 ∼ s2 =⇒ ∀f ∈ Σω, `(γ([s1f])) = `(γ([s2f])) (right-monotonicity)
⇐⇒ ∀f ∈ Σω, `(π(s1f)) = `(π(s2f)) (limit-error 0)
⇐⇒ s1 ∼ωΦ s2 (definition)
⇐⇒ s1 ∼∗Φ s2 (hypothesis)

The contradiction is then raised by Proposition 10 implying that ∼ = ∼∗Φ. ut

As demonstrated in Example 5 and discussed above, the discounted response
specification does not display resource-intensive limit behavior. We give below
two examples of specifications with resource-intensive limit behavior. Let us start
with the maximal response-time specification.

Example 25. Consider the maximal response-time specification ΦMR = (MaxResp,
lim) from Example 16. We argue that ∼∗ΦMR

and ∼ωΦMR
overlap.

Suppose towards contradiction that there exist s, r ∈ Σ∗ such that s ∼ωΦMR
r

and s 6∼∗ΦMR
r. Then, there is t ∈ Σ∗ with ΦMR(st) 6= ΦMR(rt). If at least one

of st or rt has no pending request, take the continuation otherω to reach a
contradiction to s ∼ωΦMR

r. Otherwise, if in both st and rt the current response
time is smaller than the maximum among granted requests, then the continuation
ackω yields a contradiction. The same continuation covers the case when both
current response times are greater. Finally, assume w.l.o.g. that the current
response time is smaller than the maximum among granted requests in st and
greater in rt. In this case, ackω yields a contradiction again because their outputs
stay the same as ΦMR(st) and ΦMR(rt), respectively. Therefore, we have s ∼∗ΦMR

r,
and thus ∼∗ΦMR

and ∼ωΦMR
overlap.

Next, we describe the average response-time specification and argue that it
displays resource-intensive limit behavior.

Example 26. Let Σ = {req, ack, other} and consider the usual LTL response
specification P = �(req → ♦ack). For s ∈ Σ∗, we denote by RespTime(s)
the total number of letters between the matching req-ack pairs in s, and by

Abstract Monitors for Quantitative Specifications 15

NumReq(s) the number of valid req’s in s. For all s ∈ Σ∗, we fix p(s) = 1 if
s ∈ P , and p(s) = 0 otherwise. Then, we define RespTime(s) =

∑
r�s 1 − p(r)

and NumReq(s) = |Ps| where Ps = {r � s | ∃t ∈ Σ∗, r = t.req∧ p(t) = 1} is the
set of valid requests in s. We define the average response-time specification as
ΦAR = (AvgResp, lim inf) where we let AvgResp(s) = RespTime(s)

NumReq(s) for all s ∈ Σ∗.
We claim that ∼∗ΦAR

and ∼ωΦAR
overlap. To show this, one can proceed similarly

as in Example 25. The cases with no pending requests are similar. When both
traces have a pending request and their output values differ, extend both with
ackω to get a contradiction.

4.2 Reversible specifications
The reversible subclass of specifications enjoys the ability to move between com-
putation steps forward and backward deterministically. Such specifications re-
ceived particular interest in the literature since they can be implemented on
hardware without energy dissipation [42,52]. Since it imitates the specification,
the exact-value monitor of a reversible specification can roll back its computa-
tion, if allowed, without needing additional memory. From an automata-theoretic
perspective, reversibility can be seen as the automaton being both forward and
backward deterministic. Algebraically, this is captured by the syntactic monoid
being a group.
Definition 27 (reversible specification). A specification Φ is reversible iff
(Σ∗/∼∗Φ, ·, ε) is a group.

First, we describe the average ping specification – a variant of the aver-
age response-time specification where a single ping event captures req and ack
events, and time proceeds through clock tick events. We then show that this
specification is reversible.
Example 28. Let Σ = {ping, tick, other}. Let ValidTick(s) = |s|tick − |r|tick
where r � s is the longest prefix with no ping, and let NumPing(s) = |s|ping. The
average ping specification is defined as ΦAP = (AvgPing, lim inf) where, for all
s ∈ Σ∗, we let AvgPing(s) = ValidTick(s)

NumPing(s) if NumPing(s) > 0; and AvgPing(s) = −1
otherwise.

We argue that this specification is reversible. To see why, first observe for
all s, r ∈ Σ∗ that we have s ∼∗ΦAP

r iff (i) NumPing(s) = NumPing(r) and
(ii) ValidTick(s) = ValidTick(r). We particularly show for every s, r, t ∈ Σ∗ that
if s �∗ΦAP

r then st �∗ΦAP
rt, therefore ∼∗ΦAP

yields a group. Let s, r ∈ Σ∗ be such
that s �∗ΦAP

r and let t ∈ Σ∗ be arbitrary. Suppose the condition (i) above does
not hold. Since the NumPing values increase monotonically with every ping, we
get NumPing(st)−NumPing(rt) = NumPing(s)−NumPing(r), which is non-zero
by supposition. If (ii) does not hold, it does not hold for st and rt either by a
similar reasoning. Hence we have st �∗ΦAP

rt.
Intuitively, we can backtrack the information on these functions: The value

of NumPing is decremented with each preceding ping, while ValidTick is decre-
mented with each preceding tick until it hits 0. It means that ∼∗ΦAP

can be seen
as an automaton that is both forward and backward deterministic.

16 T. A. Henzinger et al.

We identify below a well-behaved subclass of reversible specifications with
resource-intensive limit behavior.

Theorem 29. Let Φ be a reversible specification. If for every s, r ∈ Σ∗ with
s ∼ωΦ r there exists t ∈ Σ∗ with st ∼∗Φ rt, then Φ has resource-intensive limit
behavior.

Proof. We show that the reversibility of Φ, together with the above assumption,
implies ∼∗Φ = ∼ωΦ. Note that the inclusion ∼∗Φ ⊆ ∼ωΦ always holds as stated by
Fact 22. Assuming (Σ∗/∼∗Φ, ·, ε) is a group, we have s1r ∼∗Φ s2r ⇒ s1 ∼∗Φ s2 for
all s1, s2, r ∈ Σ∗. The inclusion ∼ωΦ ⊆ ∼∗Φ holds since having s1 �∗Φ s2 implies
for all r ∈ Σ∗ that s1r �∗Φ s2r, which in turn implies s1 �ωΦ s2 by our initial
assumption. Finally, by Theorem 24, we obtain that Φ has resource-intensive
limit behavior. ut

Recall the average ping specification from Example 28. It is reversible, as
discussed earlier, and satisfies the condition in Theorem 29, therefore it has
resource-intensive limit behavior. Finally, we present the maximal ping – a simi-
larly simple variant of the maximal response-time specification. We demonstrate
that this specification is not reversible, although it has resource-intensive limit
behavior.

Example 30. Let Σ = {ping, other} and consider the boolean specification
P = �♦ping. Let CurPing(s) and MaxPing(s) be defined similarly as for the
maximal response-time specification in Example 16. We fix ΦMP = (MaxPing, lim)
which we call the maximal ping specification. Consider s = ping.other and
r = ping.other.other. While s 6∼∗ΦMP

r, we have sr ∼∗ΦMP
rr, therefore ∼∗ΦMP

does
not yield a group. Intuitively, this is because we cannot backtrack the informa-
tion on the running maximum. However, similarly as for the maximal-response
time specification in Example 16, one can verify that ∼∗ΦMP

= ∼ωΦMP
.

Note that a notion of reversibility exists for abstract monitors as well: A mon-
itorM = (∼, γ) where ∼ yields a group enjoys reversibility. In particular, this
ability allows the monitor to return to a previous computation step without
using additional resources and thus consider a different trace suffix.

5 Conclusion and Future Work

We formalize a framework that supports reasoning about precision-resource
trade-offs for the approximate and exact monitoring of quantitative specifi-
cations. Unlike previous results, which analyze trade-offs for specific machine
models such as register monitors [32,37], the framework presented in this paper
studies for the first time an abstract notion of monitors, independent of the rep-
resentation model, and separates the monitor errors on finite traces from those
at the limit. These innovations allow us to design and study monitors that keep
the focus on the resources needed for the approximate monitoring of quantitative

Abstract Monitors for Quantitative Specifications 17

specifications with a given precision. We provide several examples of when ap-
proximate monitoring can save resources and investigate when it fails to achieve
this goal.

An expected future work is to provide a procedure for constructing a con-
crete (exact or approximate) monitor from an abstract description. Monitors
having finitely many equivalence classes can be naturally mapped to finite-state
automata. For a monitor with infinitely many equivalence classes, the model
must be an infinite-state transition system. Yet, there are different levels of in-
finite state space. It can be generated, for example, by a finite collection of
registers [32] or by a pushdown system [28]. Even when two abstract monitors
are mapped to register automata with the same number of registers, they may
differ in the type of operations used or the run-time needed per observation. It
is also worth emphasizing that saving a single register may save infinitely many
resources. Our current results do not provide such performance, so it is a natural
future direction. To this end, we can consider alternative approaches to evaluate
a monitor based on the number of violations of the error-threshold.

Another direction is on the relevance of resources through time. Our notion
of resource use covers the number of equivalence classes added at time n, but an
assumption that the monitor can release resources would trigger more possibili-
ties. We can extend our framework to dynamic abstract monitors in a way that is
related to existing works on dynamic programming for model checking [53]. In-
tuitively, a dynamic abstract monitor keeps track of the equivalence classes that
can be reused in the future and prunes all the others to reduce resource use.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work was
supported in part by the ERC-2020-AdG 101020093.

18 T. A. Henzinger et al.

References
1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The best

a monitor can do. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual
Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana,
Slovenia (Virtual Conference). LIPIcs, vol. 183, pp. 7:1–7:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CSL.
2021.7, https://doi.org/10.4230/LIPIcs.CSL.2021.7

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An opera-
tional guide to monitorability with applications to regular properties. Softw. Syst.
Model. 20(2), 335–361 (2021). https://doi.org/10.1007/s10270-020-00860-z,
https://doi.org/10.1007/s10270-020-00860-z

3. Albers, S.: Online algorithms: a survey. Mathematical Programming 97(1), 3–26
(2003)

4. Alechina, N., Dastani, M., Logan, B.: Norm approximation for imperfect monitors.
In: Bazzan, A.L.C., Huhns, M.N., Lomuscio, A., Scerri, P. (eds.) International
conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris,
France, May 5-9, 2014. pp. 117–124. IFAAMAS/ACM (2014), http://dl.acm.
org/citation.cfm?id=2615753

5. Alur, R., Mamouras, K., Stanford, C.: Automata-based stream processing. In: 44th
International Colloquium on Automata, Languages, and Programming (ICALP
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

6. Alur, R., Mamouras, K., Stanford, C.: Modular quantitative monitoring. Proc.
ACM Program. Lang. 3(POPL) (Jan 2019). https://doi.org/10.1145/3290363,
https://doi.org/10.1145/3290363

7. Aminof, B., Kupferman, O., Lampert, R.: Rigorous approximated determiniza-
tion of weighted automata. Theor. Comput. Sci. 480, 104–117 (2013). https://
doi.org/10.1016/j.tcs.2013.02.005, https://doi.org/10.1016/j.tcs.2013.
02.005

8. Audrito, G., Casadei, R., Damiani, F., Stolz, V., Viroli, M.: Adaptive dis-
tributed monitors of spatial properties for cyber-physical systems. J. Syst. Softw.
175, 110908 (2021). https://doi.org/10.1016/j.jss.2021.110908, https://
doi.org/10.1016/j.jss.2021.110908

9. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: Towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods. pp. 68–84. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

10. Bartocci, E., Falcone, Y.: Lectures on Runtime Verification. Springer (2018)
11. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime

verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification -
Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457,
pp. 1–33. Springer (2018). https://doi.org/10.1007/978-3-319-75632-5_1,
https://doi.org/10.1007/978-3-319-75632-5_1

12. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. Journal of the ACM (JACM) 62(2), 1–45 (2015)

13. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: International Workshop on Runtime Verification. pp. 126–138.
Springer (2007)

14. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/
logcom/exn075, https://doi.org/10.1093/logcom/exn075

https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.1007/s10270-020-00860-z
https://doi.org/10.1007/s10270-020-00860-z
https://doi.org/10.1007/s10270-020-00860-z
http://dl.acm.org/citation.cfm?id=2615753
http://dl.acm.org/citation.cfm?id=2615753
https://doi.org/10.1145/3290363
https://doi.org/10.1145/3290363
https://doi.org/10.1145/3290363
https://doi.org/10.1016/j.tcs.2013.02.005
https://doi.org/10.1016/j.tcs.2013.02.005
https://doi.org/10.1016/j.tcs.2013.02.005
https://doi.org/10.1016/j.tcs.2013.02.005
https://doi.org/10.1016/j.tcs.2013.02.005
https://doi.org/10.1016/j.tcs.2013.02.005
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075

Abstract Monitors for Quantitative Specifications 19

15. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for ltl and tltl.
ACM Trans. Softw. Eng. Methodol. 20(4) (Sep 2011). https://doi.org/10.1145/
2000799.2000800, https://doi.org/10.1145/2000799.2000800

16. Boker, U., Henzinger, T.A.: Approximate determinization of quantitative au-
tomata. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India. LIPIcs,
vol. 18, pp. 362–373. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2012). https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362, https://doi.org/
10.4230/LIPIcs.FSTTCS.2012.362

17. Brázdil, T., Chatterjee, K., Forejt, V., Kučera, A.: Multigain: A controller synthesis
tool for mdps with multiple mean-payoff objectives. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 181–187.
Springer (2015)

18. Calinescu, R., Gerasimou, S., Johnson, K., Paterson, C.: Using runtime quantita-
tive verification to provide assurance evidence for self-adaptive software - advances,
applications and research challenges. In: de Lemos, R., Garlan, D., Ghezzi, C.,
Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III. Assurances
- International Seminar, Dagstuhl Castle, Germany, December 15-19, 2013, Re-
vised Selected and Invited Papers. Lecture Notes in Computer Science, vol. 9640,
pp. 223–248. Springer (2013). https://doi.org/10.1007/978-3-319-74183-3_8,
https://doi.org/10.1007/978-3-319-74183-3_8

19. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. In: Logic and
Algebra of Specification, pp. 143–202. Springer (1993)

20. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity markov decision pro-
cesses. In: International Symposium on Mathematical Foundations of Computer
Science. pp. 206–218. Springer (2011)

21. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans.
Comput. Logic 11(4) (Jul 2010). https://doi.org/10.1145/1805950.1805953,
https://doi.org/10.1145/1805950.1805953

22. Chatterjee, K., Henzinger, T.A., Otop, J.: Quantitative monitor automata. In:
International Static Analysis Symposium. pp. 23–38. Springer (2016)

23. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification of
infinite-state systems. In: Feng, L., Fisman, D. (eds.) Runtime Verification - 21st
International Conference, RV 2021, Virtual Event, October 11-14, 2021, Proceed-
ings. Lecture Notes in Computer Science, vol. 12974, pp. 207–227. Springer (2021).
https://doi.org/10.1007/978-3-030-88494-9_11, https://doi.org/10.1007/
978-3-030-88494-9_11

24. Considine, J., Li, F., Kollios, G., Byers, J.W.: Approximate aggregation tech-
niques for sensor databases. In: Özsoyoglu, Z.M., Zdonik, S.B. (eds.) Proceed-
ings of the 20th International Conference on Data Engineering, ICDE 2004, 30
March - 2 April 2004, Boston, MA, USA. pp. 449–460. IEEE Computer So-
ciety (2004). https://doi.org/10.1109/ICDE.2004.1320018, https://doi.org/
10.1109/ICDE.2004.1320018

25. Cousot, P.: Abstract interpretation. ACM Computing Surveys (CSUR) 28(2), 324–
328 (1996)

26. d’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME’05). pp. 166–174. IEEE (2005)

https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.362
https://doi.org/10.1007/978-3-319-74183-3_8
https://doi.org/10.1007/978-3-319-74183-3_8
https://doi.org/10.1007/978-3-319-74183-3_8
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1109/ICDE.2004.1320018
https://doi.org/10.1109/ICDE.2004.1320018
https://doi.org/10.1109/ICDE.2004.1320018
https://doi.org/10.1109/ICDE.2004.1320018

20 T. A. Henzinger et al.

27. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: IJCAI’13 Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence. pp. 854–860. Association for Computing Ma-
chinery (2013)

28. Decker, N., Leucker, M., Thoma, D.: Impartiality and anticipation for monitor-
ing of visibly context-free properties. In: Legay, A., Bensalem, S. (eds.) Runtime
Verification. pp. 183–200. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

29. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) Computer Aided Verification. pp. 27–39. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

30. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? International Journal on Software Tools for Technology Transfer 14(3),
349–382 (2012)

31. Ferrère, T., Henzinger, T.A., Kragl, B.: Monitoring event frequencies. In: 28th
EACSL Annual Conference on Computer Science Logic (CSL 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

32. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence. pp. 394–403 (2018)

33. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 112–127.
Springer (2011)

34. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Della Monica,
D., Ingólfsdóttir, A.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) Runtime Verification. pp. 8–29. Springer International Publishing, Cham
(2017)

35. Halamish, S., Kupferman, O.: Approximating deterministic lattice automata. In:
Chakraborty, S., Mukund, M. (eds.) Automated Technology for Verification and
Analysis - 10th International Symposium, ATVA 2012, Thiruvananthapuram, In-
dia, October 3-6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7561,
pp. 27–41. Springer (2012). https://doi.org/10.1007/978-3-642-33386-6_4,
https://doi.org/10.1007/978-3-642-33386-6_4

36. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Deshmukh,
J., Ničković, D. (eds.) Runtime Verification. pp. 3–18. Springer International Pub-
lishing, Cham (2020)

37. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). pp.
1–14. IEEE (2021)

38. Ho, H., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In:
Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8734, pp. 178–192. Springer (2014).
https://doi.org/10.1007/978-3-319-11164-3_15, https://doi.org/10.1007/
978-3-319-11164-3_15

39. Holzmann, G.J., Smith, M.H.: Automating software feature verification. Bell Labs
Tech. J. 5(2), 72–87 (2000). https://doi.org/10.1002/bltj.2223, https://doi.
org/10.1002/bltj.2223

https://doi.org/10.1007/978-3-642-33386-6_4
https://doi.org/10.1007/978-3-642-33386-6_4
https://doi.org/10.1007/978-3-642-33386-6_4
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1002/bltj.2223
https://doi.org/10.1002/bltj.2223
https://doi.org/10.1002/bltj.2223
https://doi.org/10.1002/bltj.2223

Abstract Monitors for Quantitative Specifications 21

40. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative moni-
toring of stl with edit distance. Formal methods in system design 53(1), 83–112
(2018)

41. Kwiatkowska, M.: Quantitative verification: Models techniques and tools. In: Pro-
ceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering. p. 449–458. ESEC-FSE ’07, Association for Computing Machin-
ery, New York, NY, USA (2007). https://doi.org/10.1145/1287624.1287688,
https://doi.org/10.1145/1287624.1287688

42. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J.
Res. Dev. 5(3), 183–191 (1961). https://doi.org/10.1147/rd.53.0183, https:
//doi.org/10.1147/rd.53.0183

43. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166. Springer (2004)

44. Mamouras, K., Chattopadhyay, A., Wang, Z.: Algebraic quantitative semantics for
efficient online temporal monitoring. In: Groote, J.F., Larsen, K.G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 27th International Con-
ference, TACAS 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12651,
pp. 330–348. Springer (2021). https://doi.org/10.1007/978-3-030-72016-2_
18, https://doi.org/10.1007/978-3-030-72016-2_18

45. Mamouras, K., Chattopadhyay, A., Wang, Z.: A compositional framework for
quantitative online monitoring over continuous-time signals. In: Feng, L., Fis-
man, D. (eds.) Runtime Verification - 21st International Conference, RV 2021,
Virtual Event, October 11-14, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12974, pp. 142–163. Springer (2021). https://doi.org/10.1007/
978-3-030-88494-9_8, https://doi.org/10.1007/978-3-030-88494-9_8

46. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS 2015, Hyderabad, India, May 25-29, 2015.
pp. 494–503. IEEE Computer Society (2015). https://doi.org/10.1109/IPDPS.
2015.95, https://doi.org/10.1109/IPDPS.2015.95

47. Nia, M.A., Kargahi, M., Faghih, F.: Probabilistic approximation of runtime quanti-
tative verification in self-adaptive systems. Microprocess. Microsystems 72 (2020).
https://doi.org/10.1016/j.micpro.2019.102943, https://doi.org/10.1016/
j.micpro.2019.102943

48. Piterman, N., Pnueli, A.: Temporal Logic and Fair Discrete Systems, pp. 27–
73. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8_2, https://doi.org/10.1007/978-3-319-10575-8_2

49. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new
aggregation techniques for sensor networks. In: Stankovic, J.A., Arora, A., Govin-
dan, R. (eds.) Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, SenSys 2004, Baltimore, MD, USA, November 3-5,
2004. pp. 239–249. ACM (2004). https://doi.org/10.1145/1031495.1031524,
https://doi.org/10.1145/1031495.1031524

50. Silberstein, A., Braynard, R., Yang, J.: Constraint chaining: on energy-efficient
continuous monitoring in sensor networks. In: Chaudhuri, S., Hristidis, V., Poly-
zotis, N. (eds.) Proceedings of the ACM SIGMOD International Conference

https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1145/1287624.1287688
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1007/978-3-030-72016-2_18
https://doi.org/10.1007/978-3-030-72016-2_18
https://doi.org/10.1007/978-3-030-72016-2_18
https://doi.org/10.1007/978-3-030-72016-2_18
https://doi.org/10.1007/978-3-030-72016-2_18
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1007/978-3-030-88494-9_8
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1016/j.micpro.2019.102943
https://doi.org/10.1016/j.micpro.2019.102943
https://doi.org/10.1016/j.micpro.2019.102943
https://doi.org/10.1016/j.micpro.2019.102943
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1145/1031495.1031524
https://doi.org/10.1145/1031495.1031524
https://doi.org/10.1145/1031495.1031524

22 T. A. Henzinger et al.

on Management of Data, Chicago, Illinois, USA, June 27-29, 2006. pp. 157–
168. ACM (2006). https://doi.org/10.1145/1142473.1142492, https://doi.
org/10.1145/1142473.1142492

51. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties with an application to privacy. Formal Methods Syst. Des. 58(1),
126–159 (2021). https://doi.org/10.1007/s10703-020-00358-w, https://doi.
org/10.1007/s10703-020-00358-w

52. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
Automata, Languages and Programming, 7th Colloquium, Noordweijkerhout, The
Netherlands, July 14-18, 1980, Proceedings. Lecture Notes in Computer Science,
vol. 85, pp. 632–644. Springer (1980). https://doi.org/10.1007/3-540-10003-2_
104, https://doi.org/10.1007/3-540-10003-2_104

53. Wang, C., Yang, Y., Gupta, A., Gopalakrishnan, G.: Dynamic model checking
with property driven pruning to detect race conditions. In: Cha, S.D., Choi, J.,
Kim, M., Lee, I., Viswanathan, M. (eds.) Automated Technology for Verification
and Analysis, 6th International Symposium, ATVA 2008, Seoul, Korea, October
20-23, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5311, pp. 126–
140. Springer (2008). https://doi.org/10.1007/978-3-540-88387-6_11, https:
//doi.org/10.1007/978-3-540-88387-6_11

54. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive seman-
tics. In: Goodloe, A., Person, S. (eds.) NASA Formal Methods - 4th Interna-
tional Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7226, pp. 418–432. Springer (2012).
https://doi.org/10.1007/978-3-642-28891-3_37, https://doi.org/10.1007/
978-3-642-28891-3_37

https://doi.org/10.1145/1142473.1142492
https://doi.org/10.1145/1142473.1142492
https://doi.org/10.1145/1142473.1142492
https://doi.org/10.1145/1142473.1142492
https://doi.org/10.1007/s10703-020-00358-w
https://doi.org/10.1007/s10703-020-00358-w
https://doi.org/10.1007/s10703-020-00358-w
https://doi.org/10.1007/s10703-020-00358-w
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/978-3-540-88387-6_11
https://doi.org/10.1007/978-3-540-88387-6_11
https://doi.org/10.1007/978-3-540-88387-6_11
https://doi.org/10.1007/978-3-540-88387-6_11
https://doi.org/10.1007/978-3-642-28891-3_37
https://doi.org/10.1007/978-3-642-28891-3_37
https://doi.org/10.1007/978-3-642-28891-3_37
https://doi.org/10.1007/978-3-642-28891-3_37

	Abstract Monitors for Quantitative Specifications

