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Abstract. We introduce the monitoring of trace properties under as-
sumptions. An assumption limits the space of possible traces that the
monitor may encounter. An assumption may result from knowledge about
the system that is being monitored, about the environment, or about
another, connected monitor. We define monitorability under assumptions
and study its theoretical properties. In particular, we show that for every
assumption A, the boolean combinations of properties that are safe or
co-safe relative to A are monitorable under A. We give several examples
and constructions on how an assumption can make a non-monitorable
property monitorable, and how an assumption can make a monitorable
property monitorable with fewer resources, such as integer registers.

1 Introduction

Monitoring is a run-time verification technique that checks, on-line, if a given
trace of a system satisfies a given property [3]. The trace is an infinite sequence
of observations, and the property defines a set of “good” traces. The monitor
watches the trace, observation by observation, and issues a positive verdict as
soon as all infinite extensions of the current prefix are good, and a negative verdict
as soon as all infinite extensions of the current prefix are bad. The property is
monitorable if every prefix of every trace has a finite extension that allows a
verdict, positive or negative [17]. All safety and co-safety properties, and their
boolean combinations, are monitorable [5,10].

The above definition of monitorability assumes that the system may generate
any trace. Often a stronger assumption is possible: in predictive monitoring, the
monitor has partial knowledge of the system and, therefore, can partly predict
the future of a trace [7,18,8,16]; in real-time monitoring, the monitor can be
certain that every trace contains infinitely many clock ticks [12]; in composite
monitoring, a secondary monitor can rely on the result of a primary monitor. In
all these scenarios, the monitor can assume that the observed trace comes from a
limited set A of admissible traces. We say that the given property is monitorable
under assumption A if every prefix of every trace in A has a finite extension in A
that allows a verdict relative to A, that is, either all further, infinite extensions
in A are good, or they all are bad.
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Assumptions can make non-monitorable properties monitorable. Consider the
finite alphabet {req, ack, other} of observations, and the response property

P = �(req → ♦ack)

that “every req is followed by ack.” The property P is not monitorable because
every finite trace can be extended in two ways: by the infinite extension ackω
which makes the property true, and by the infinite extension reqω which makes
the property false. Now suppose that the monitor can assume that “if any req
is followed by another req without an intervening ack, then there will not be
another ack,” or formally:

A = �(req → ((¬req)W (ack ∨�(¬ack)))).

The property P is monitorable under A because every finite prefix in A has the
admissible extension req · req which makes the property false1.

In Section 2, we study the boolean closure and entailment properties of
monitoring under assumptions. In Section 3, we study safety and co-safety under
assumptions, following [12]. We show that for every assumption A, every property
that is safe relative to A, every property that is co-safe relative to A, and all their
boolean combinations are monitorable under A. The results of both sections hold
also if the universe of properties and assumptions is limited to the ω-regular or
the counter-free ω-regular languages, i.e., those properties which can be specified
using finite automata over infinite words or linear temporal logic, respectively.

In Section 4, we show that assumptions can reduce the resources needed
for monitoring. Following [11], we define k-register monitorability for monitors
that use a fixed number k of integer registers. A register that is operated by
increments, decrements, and tests against zero is called a counter. It is known that
the k-counter monitorability hierarchy is strict, that is, strictly more properties
are (k + 1)-counter monitorable than are k-counter monitorable, for all k ≥ 0
[11]. We present a property which requires k counters for monitoring, but can be
monitored with k − ` counters under an assumption that can be monitored with
` counters.

Finally, in Section 5, we construct for every property P three assumptions
that make P monitorable: first, a liveness assumption AS that makes P safe
relative to AS , and therefore monitorable under AS ; second, a liveness assumption
AC that makes P co-safe relative to AC , and therefore monitorable under AC ;
and third, a co-safety assumption AM so that P is monitorable under AM . We
use topological tools for our constructions, most notably the characterization of
monitorable properties as those sets, in the Cantor topology on infinite words,
whose boundary is nowhere dense [9].

1 We follow the notation of [13] for temporal logic, where U is the (strong) until
operator, and W is the unless (or weak until) operator.
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2 Monitorability and Assumptions

Let Σ = {a, b, . . .} be a finite alphabet of observations. A trace is a finite or
infinite sequence of observations. We usually denote finite traces by s, r, t, u ∈ Σ∗,
and infinite traces by f ∈ Σω. A property P ⊆ Σω is a set of infinite traces, and
so is an assumption A ⊆ Σω. For traces f ∈ Σω and s ∈ Σ∗, we write s ≺ f
iff s is a finite prefix of f , and denote by pref (f) the set of finite prefixes of f .
For trace sets P ⊆ Σω, we define Pref (P ) =

⋃
f∈P pref (f). We denote by P the

complement of P in Σω.
Intuitively, an assumption limits the universe of possible traces. When there

are no assumptions, the system can produce any trace in Σω. However, under an
assumption A, all observed traces come from the set A. We extend the classical
definition of monitorability [17] to account for assumptions as follows.

Definition 1. Let P be a property, A an assumption, and s ∈ Pref (A) a finite
trace. The property P is positively determined under A by s iff, for all f , if
sf ∈ A, then sf ∈ P . Similarly, P is negatively determined under A by s iff, for
all f , if sf ∈ A, then sf /∈ P .

Definition 2. The property P is s-monitorable under the assumption A, where
s ∈ Pref (A) is a finite trace, iff there is a finite continuation r such that
sr ∈ Pref (A) positively or negatively determines P under A. The property P
is monitorable under A iff it is s-monitorable under A for all finite traces
s ∈ Pref (A). We denote the set of properties that are monitorable under A by
Mon(A).

For a property P and an assumption A, if P ∩A 6= ∅, we say that P specifies
under A the set P ∩ A. The monitorability of P under A may seem related to
the monitorability of P ∩A. However, the two concepts are independent as we
show in the following remark.

Remark 1. In general, P ∈ Mon(A) does not imply P ∩A ∈ Mon(Σω). Consider
A = �♦c and P = a∨((¬b)U (a∧�♦c)). The property P specifies ((¬b)U a)∧�♦c
under A. Observe that every finite trace s ∈ Pref (A) can be extended to sr ∈
Pref (A) which satisfies or violates ((¬b)U a). Then, since every infinite extension
of sr in A satisfies �♦c, the finite trace sr positively or negatively determines
P under A. Therefore, P ∈ Mon(A). However, P ∩A is not s-monitorable under
Σω for s = a because for every finite extension r we have srcω ∈ P ∩ A and
sraω /∈ P ∩A.

Conversely, P ∩A ∈ Mon(Σω) does not imply P ∈ Mon(A) either. Consider
A = �¬a and P = ♦�c. We have P ∩A ∈ Mon(Σω) because, for every s ∈ Σ∗,
the finite trace sa negatively determines P . However, P /∈ Mon(A) because for
every finite trace s ∈ Pref (A), we have scω ∈ P and sbω /∈ P . We will discuss
the upward and downward preservation of monitorability later in this section.

As in the case of monitorability in Σω, the set of monitorable properties
under a fixed assumption enjoy the following closure properties.
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Theorem 1. For every assumption A, the set Mon(A) is closed under boolean
operations.

Proof. Let P,Q ∈ Mon(A) be two monitorable properties under assumption A.

– P ∈ Mon(A): If P is positively (resp. negatively) determined under A by a
finite trace s ∈ Pref (A), then s negatively (resp. positively) determines P
under A.

– P ∩ Q ∈ Mon(A): Let s ∈ Pref (A) be a finite trace. Since P ∈ Mon(A),
there is an extension r such that sr ∈ Pref (A) positively or negatively
determines P under A. Moreover, since Q ∈ Mon(A), there exists t such
that srt ∈ Pref (A) positively or negatively determines Q under A. If both
properties are positively determined under A by given finite traces, then
P ∩Q is positively determined under A by srt. Otherwise, the intersection is
negatively determined under A by srt.

– P ∪Q ∈ Mon(A): Follows from above points since P ∪Q = P ∩Q. ut

Next, we switch our focus from boolean operations on properties to boolean
operations on assumptions. The following examples demonstrate that monitora-
bility is not preserved under complementation, intersection, nor under union of
assumptions.

Example 1. Let A = �♦b be an assumption, and P = �♦a ∨ (�♦b ∧ ♦c) be
a property. Under assumption A, the property P specifies (�♦a ∨ ♦c) ∧ �♦b.
For every s ∈ Pref (A), the finite trace sc positively determines P under A
because every infinite extension of sc in A satisfies the property. Therefore,
we have P ∈ Mon(A). However, under assumption A, the property P specifies
�♦a ∧ (¬�♦b), and P /∈ Mon(A). This is because every finite trace s ∈ Pref (A)
can be extended to either satisfy or violate P under A, as illustrated by saω ∈ P
and scω /∈ P .

Example 2. Let A = �¬a and B = �¬b be assumptions, and P = �a ∨ �b ∨
(�(¬a) ∧�(¬b) ∧ ♦�d) be a property. We have P ∈ Mon(A) because for every
finite prefix s ∈ Pref (A), the finite trace sbc negatively determines P under
A. Similarly, P ∈ Mon(B) because for every s ∈ Pref (B), the finite trace sac
negatively determines P under B. However, P /∈ Mon(A ∩ B). If it were, then for
every finite s ∈ Pref (A ∩B) there would exist a finite continuation r such that
sr ∈ Pref (A ∩B) positively or negatively determines P under A ∩B. In either
case, consider srcω /∈ P and srdω ∈ P to reach a contradiction.

Example 3. Let A = �(c → �♦a) and B = (¬�♦b) ∧ �(c → (¬�♦a)) be
assumptions, and P = �♦a∨�♦b be a property. We have P ∈ Mon(A) because for
every s ∈ Pref (A), the finite trace sc positively determines P under A. Similarly,
P ∈ Mon(B) because for every s ∈ Pref (B), the finite trace sc negatively
determines P under B. Consider the assumption A ∪B, and let s ∈ Pref (A ∪B)
be a finite trace containing c. We know that for each continuation f , either
(i) sf has infinitely many a’s by assumption A, or (ii) sf has finitely many
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a’s and finitely many b’s by assumption B. If (i) holds, the trace s positively
determines P under A ∪ B. If (ii) holds, the trace s negatively determines P
under A ∪B. However, we cannot distinguish between the two cases by looking
at finite prefixes. Therefore, for every s ∈ Pref (A ∪B) that contains c, property
P is not s-monitorable under A ∪B, which implies P /∈ Mon(A ∪ B).

The union is arguably the most interesting boolean operation on assumptions.
It is relatively easy to discover strong assumptions that make a given property
monitorable. However, in practice, we are interested in assumptions that are as
weak as possible, and taking the union of assumptions can be a way to construct
such assumptions. Next, we define a relation between two assumptions and a
property, in order to capture a special case in which monitorability is preserved
under the union of assumptions.

Definition 3. Let A and B be two assumptions, and P be a property such that
P ∈ Mon(A) and P ∈ Mon(B). The assumptions A and B are compatible with
respect to P iff for every finite trace s ∈ Pref (A) that positively (resp. negatively)
determines P under A, there is no finite extension r such that sr ∈ Pref (B) and
sr negatively (resp. positively) determines P under B, and vice versa.

Intuitively, the notion of compatibility prevents contradictory verdicts as
in Example 3. Under the supposition of compatibility with respect to a given
property, we show that monitorability is preserved under the union of assumptions.

Theorem 2. Let A and B be assumptions, and P be a property such that
P ∈ Mon(A) and P ∈ Mon(B). If A and B are compatible with respect to
P , then P ∈ Mon(A ∪ B).

Proof. Let s ∈ Pref (A ∪ B). We want to show that P is s-monitorable under
A ∪ B. Observe that either s ∈ Pref (A) or s ∈ Pref (B). Suppose s ∈ Pref (A).
Since P ∈ Mon(A), there is an extension r such that sr ∈ Pref (A) positively or
negatively determines P under A. Suppose sr positively determines P under A.

Observe that either sr ∈ Pref (A)\Pref (B) or sr ∈ Pref (A)∩Pref (B). If sr ∈
Pref (A) \Pref (B), then sr also positively determines P under A∪B because all
possible continuations of sr come from assumption A. If sr ∈ Pref (A)∩Pref (B),
since P ∈ Mon(B) and the two assumptions are compatible with respect to
P , there is an extension t such that srt positively determines P under B, and
either srt ∈ Pref (B) \ Pref (A) or srt ∈ Pref (A) ∩ Pref (B). If srt ∈ Pref (B) \
Pref (A), then srt also positively determines P under A ∪B because all possible
continuations of srt come from B. If srt ∈ Pref (A) ∩ Pref (B), since sr and srt
positively determine P under A and under B, respectively, srt also positively
determines P under A ∪B.

Cases for s ∈ Pref (B) and negative determinacy follow from similar arguments.
Therefore, P ∈ Mon(A ∪ B) since P is s-monitorable under A∪B for every finite
trace s ∈ Pref (A ∪B). ut

Next, we explore the preservation of monitorability under the strengthening
and weakening of assumptions. We show that, in general, monitorability is neither
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downward nor upward preserved. However, for each direction, we identify a special
case in which monitorability is preserved. The following is an example of a property
that is monitorable under an assumption, but becomes non-monitorable under a
stronger assumption.

Example 4. Let A = Σω and B = �¬a be assumptions, and P = �(¬a) ∧ ♦�c
be a property. Observe that P ⊆ B ⊆ A. We have P ∈ Mon(A) because for every
finite prefix s ∈ Pref (A), the finite trace sa negatively determines P under A.
We claim that P /∈ Mon(B). If it were, then for every finite s ∈ Pref (B) there
would exist a finite continuation r such that sr ∈ Pref (B) positively or negatively
determines P under B. Consider srbω /∈ P and srcω ∈ P to reach a contradiction
in either case.

In the example above, the stronger assumption removes all prefixes that
enable us to reach a verdict. We formulate a condition to avoid this problem,
and enable downward preservation as follows.

Theorem 3. Let A and B be assumptions, and P be a property such that B ⊆ A
and P ∩A = P ∩B. If P ∈ Mon(A) and B ∈ Mon(A) such that every prefix that
negatively determines B under A has a proper prefix that negatively determines
P under A, then P ∈ Mon(B).

Proof. Let s ∈ Pref (A) be a finite trace and r, t ∈ Σ∗ be extensions such that
sr, srt ∈ Pref (A) positively or negatively determine P or B under A.

– Suppose sr positively determines P under A. Then, sr also positively deter-
mines P under B since B ⊆ A and P ∩A = P ∩B.

– Suppose sr positively determines B under A, and srt positively determines
P under A. Then, srt positively determines P under B.

– Suppose sr positively determines B under A, and srt negatively determines
P under A. Then, srt negatively determines P under B.

– Suppose sr negatively determines P under A, and srt positively determines
B under A. Then, sr negatively determines P under B.

– Suppose sr negatively determines P under A, and srt negatively determines
B under A. If we have t 6= ε, then we have sr ∈ Pref (B) and therefore
negatively determines P under B. Otherwise, there is a shortest proper prefix
u of sr that negatively determines P under A, and u ∈ Pref (B), therefore u
negatively determines P under B.

– Suppose sr negatively determines B under A, then there is a proper prefix of
sr that negatively determines P under A. We can resolve this case as above.

These imply that P is s-monitorable under B for every finite trace s ∈ Pref (B).
Therefore, P ∈ Mon(B). ut

Next, we move on to the upward preservation of monitorability. We give an
example of a property that is monitorable under an assumption, but becomes
non-monitorable under a weaker assumption.
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Example 5. Let A = Σω and B = �(b → ♦c) be assumptions, and P = ♦a ∧
�(b→ ♦c) be a property. Observe that P ⊆ B ⊆ A. We have P ∈ Mon(B) because
for each finite prefix s ∈ Pref (B), the finite trace sa positively determines P
under B. One can verify that P /∈ Mon(A) by supposing that a finite trace
s ∈ Pref (A) positively or negatively determines P under A, and considering
sbω /∈ P and sa(bc)ω ∈ P .

Intuitively, the weaker assumption in the previous example introduces prefixes
that prevents us from reaching a verdict. The following theorem provides a
condition to ensure that all new prefixes can be extended to reach a verdict.

Theorem 4. Let A and B be assumptions, and P be a property such that B ⊆ A
and P ∩A = P ∩B. If P ∈ Mon(B) and B ∈ Mon(A), then P ∈ Mon(A).

Proof. Let s be a finite trace and r be a finite continuation such that sr ∈ Pref (A)
positively or negatively determines B under A. If sr negatively determines B
under A, then it also negatively determines P under A because B ⊆ A and
P ∩A = P ∩B. Suppose sr positively determines B under A. Since P ∈ Mon(B),
there is a finite extension t such that srt ∈ Pref (B) positively or negatively
determines P under B. Then, srt also positively or negatively determines P under
A. It yields that P is s-monitorable under A for every finite trace s ∈ Pref (A),
hence P ∈ Mon(A). ut

For many problems in runtime verification, the set of ω-regular and LTL-
expressible properties deserve special attention due to their prevalence in specifi-
cation languages. Therefore, we remark that the results presented in this section
still hold true if we limit ourselves to ω-regular or to LTL-expressible properties
and assumptions.

3 Safety and Co-safety Properties Under Assumptions

In this section, we extend the notion of relative safety from [12] to co-safety
properties, and to general boolean combinations of safety properties, with a focus
on monitorability.

Definition 4. A property P is a safety property under assumption A iff there
is a set S ⊆ Σ∗ of finite traces such that, for every trace f ∈ A, we have f ∈ P
iff every finite prefix of f is contained in S. Formally,

∃S ⊆ Σ∗ : ∀f ∈ A : f ∈ P ⇐⇒ pref (f) ⊆ S.

Equivalently, P is a safety property under assumption A iff every f /∈ P has a
finite prefix s ≺ f that negatively determines P under A. We denote by Safe(A)
the set of safety properties under assumption A.
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Definition 5. A property P is a co-safety property under assumption A iff there
is a set S ⊆ Σ∗ of finite traces such that, for every trace f ∈ A, we have f ∈ P
iff some finite prefix of f is contained in S. Formally,

∃S ⊆ Σ∗ : ∀f ∈ A : f ∈ P ⇐⇒ pref (f) ∩ S 6= ∅.

Equivalently, P is a co-safety property under assumption A iff every f ∈ P has a
finite prefix s ≺ f that positively determines P under A. We denote by CoSafe(A)
the set of co-safety properties under assumption A.

One can observe from these definitions that, for every assumption A and
property P , we have P ∈ Safe(A) iff P ∈ CoSafe(A).

Definition 6. A property P is an obligation property under assumption A iff
P =

⋂k
i=1(Si ∪Ci) for some finite k ≥ 0, where Si ∈ Safe(A) and Ci ∈ CoSafe(A)

for all 1 ≤ i ≤ k. We denote by Obl(A) the set of obligation properties under
assumption A.

The set Obl(A) is exactly the boolean combinations of properties from Safe(A)
and CoSafe(A). Therefore, we have Safe(A) ⊆ Obl(A) and CoSafe(A) ⊆ Obl(A) for
every assumption A. Note also that when A = Σω, our definitions are equivalent
to the classical definitions of safety, co-safety, and obligation properties. Next,
we present examples of non-monitorable properties that become safe or co-safe
under an assumption.

Example 6. Let P = ((¬a) U b) ∨�♦c. The property P is not monitorable, thus
not safe, because the finite trace a has no extension that positively or negatively
determines P . Let A = ¬�♦c. Then, P specifies ((¬a) U b) ∧ ¬�♦c under A.
Observe that every f /∈ P has a finite prefix s ≺ f that negatively determines
P under A because every such infinite trace in A must have a finite prefix that
violates ((¬a) U b). Therefore, we get P ∈ Safe(A).

Example 7. Let P = (¬�♦a) ∧ ♦b. The property P is not monitorable, thus not
co-safe, because the finite trace b has no extension that positively or negatively
determines P . Let A = ¬�♦a. Then, every f ∈ P has a finite prefix s ≺ f that
contains b, which positively determines P under A. Therefore, P ∈ CoSafe(A).

For the sets of safety and co-safety properties relative to a given assumption,
the following closure properties hold.

Theorem 5. For every assumption A, the set Safe(A) is closed under positive
boolean operations.

Proof. Let P,Q ∈ Safe(A) be two safety properties under assumption A. Let
f /∈ (P ∪Q) be a trace. Since we also have f /∈ P , there is a finite prefix s ≺ f
that negatively determines P under A. Similarly, we have r ≺ f that negatively
determines Q under A. Assume without loss of generality that s is a prefix of r.
Then, r negatively determines P ∪Q under A, and thus P ∪Q ∈ Safe(A).

Now, let f /∈ (P ∩ Q). By a similar argument, we have a prefix s ≺ f that
negatively determines P under A or Q under A. Then, one can verify that s also
negatively determines P ∩Q under A. Therefore, P ∩Q ∈ Safe(A). ut
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Theorem 6. For every assumption A, the set CoSafe(A) is closed under positive
boolean operations.

Proof. Let P,Q ∈ CoSafe(A) be two co-safety properties under assumption A.
Observe that P ∪ Q = P ∩Q and P ∩ Q = P ∪Q where P ,Q ∈ Safe(A), and
apply Theorem 5. ut

By combining Theorems 5 and 6 with the definition of Obl(A), we obtain the
following corollary.

Corollary 1. For every assumption A, the set Obl(A) is closed under all boolean
operations.

Next, we show that relative safety, co-safety, and obligation properties enjoy
downward preservation. In other words, if P is a safety, co-safety, or obligation
property under an assumption, then it remains a safety, co-safety, or obligation
property under all stronger assumptions.

Theorem 7 ([12]). Let A and B be assumptions such that B ⊆ A. For every
property P , if P ∈ Safe(A), then P ∈ Safe(B).

Theorem 8. Let A and B be assumptions such that B ⊆ A. For every property
P , if P ∈ CoSafe(A), then P ∈ CoSafe(B).

Proof. Since P ∈ CoSafe(A), we have P ∈ Safe(A). Then, by Theorem 7, we get
P ∈ Safe(B), which implies that P ∈ CoSafe(B). ut

Theorem 9. Let A and B be assumptions such that B ⊆ A. For every property
P , if P ∈ Obl(A), then P ∈ Obl(B).

Proof. By definition, P =
⋂k
i=1(Si∪Ci) for some finite k > 1, where Si ∈ Safe(A)

and Ci ∈ CoSafe(A) for each 1 ≤ i ≤ k. Theorems 7 and 8 imply that Si ∈ Safe(B)
and Ci ∈ CoSafe(B) for every 1 ≤ i ≤ k. Therefore, P ∈ Obl(B). ut

Finally, we show that every safety, co-safety, and obligation property relative
an assumption A is monitorable under A.

Theorem 10. For every assumption A, we have Safe(A) ⊆ Mon(A).

Proof. Let P ∈ Safe(A) be a property and s ∈ Pref (A) be a finite trace. If there
is a continuation f such that sf /∈ P , then there is a finite prefix r ≺ sf that
negatively determines P under A. Otherwise, s itself positively determines P
under A. In either case, P is s-monitorable under A for an arbitrary finite trace
s ∈ Pref (A), and thus P ∈ Mon(A). ut

Theorem 11. For every assumption A, we have CoSafe(A) ⊆ Mon(A).
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Proof. The proof idea is the same as in Theorem 10. Let P ∈ CoSafe(A) be a
property and s ∈ Pref (A) be a finite trace. If there is a continuation f such
that sf ∈ P , then there is a finite prefix r ≺ sf that positively determines P
under A. Otherwise, s itself negatively determines P under A. In either case,
P is s-monitorable under A for an arbitrary finite trace s ∈ Pref (A), and thus
P ∈ Mon(A).

Theorem 12. For every assumption A, we have Obl(A) ⊆ Mon(A).

Proof. Let P ∈ Obl(A) be a property. We can rewrite P as
⋂k
i=1(Si ∪ Ci) for

some finite k > 0 such that Si ∈ Safe(A) and Ci ∈ CoSafe(A). By Theorems 10
and 11, each Si and Ci is in Mon(A). By Theorem 1, each Si∩Ci and their union
is in Mon(A). Therefore, P ∈ Mon(A). ut

We note that, as in Section 2, the results of this section still hold when
restricted to the ω-regular or to the LTL-expressible properties and assumptions.

4 Register Monitorability

In this section, we study monitorability under assumptions for an operational
class of monitors, namely, register machines. We follow [11] to define register
machines. Let X be a set of registers storing integer variables, and consider
an instruction set of integer-valued and boolean-valued expressions over X. An
update is a mapping from registers to integer-valued expressions, and a test is a
boolean-valued expression. We denote the set of updates and tests over the set X
of registers by Γ (X) and Φ(X), respectively. We define a valuation as a mapping
v : X → Z from the set of registers to integers. For every update γ ∈ Γ (X), we
define the updated valuation v[γ] : X → Z by letting v[γ](x) = v(γ(x)) for every
x ∈ X. A test φ ∈ Φ(X) is true under the valuation v iff v |= φ.

Definition 7. A register machine is a tuple M = (X,Q,Σ,∆, q0, Ω) where X
is a finite set of registers, Q is a finite set of states, Σ is a finite alphabet,
∆ ⊆ Q×Σ ×Φ(X)× Γ (X)×Q is a set of edges, q0 ∈ Q is the initial state, and
Ω ⊆ Qω is a set of accepting runs, such that for every state q ∈ Q, letter σ ∈ Σ,
and valuation v, there is one and only one outgoing edge (q, σ, φ, γ, r) ∈ ∆ with
v |= φ, i.e., the machine is deterministic.

Let M = (X,Q,Σ,∆, q0, Ω) be a register machine. A configuration of M is a
pair (q, v) consisting of a state q ∈ Q and a valuation v : X → Z. A transition
σ−→ between two configurations of M is defined by the relation (q, v) σ−→ (q′, v′) iff
v′ = v[γ] and v |= φ for some edge (q, σ, φ, γ, q′) ∈ ∆. A run of M over a word
w = σ1σ2 . . . is an infinite sequence of transitions (q0, v0) σ1−→ (q1, v1) σ2−→ · · ·
where v0(x) = 0 for all x ∈ X. The word w ∈ Σω is accepted by M iff its (unique)
run over w yields an infinite sequence q0q1q2 . . . of states which belongs to Ω.
The set of infinite words accepted by M is called the language of M , and denoted
L(M).
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Register machines are a more powerful specification language for traces than
finite-state monitors. Even when confined to safety, this model can specify many
interesting properties beyond ω-regular, as explored in [11]. Formally, we can limit
our model to safety properties as follows: let qsink ∈ Q be a rejecting state such
that there are no edges from qsink to any state in Q \ {qsink}, and let Ω be the
set of infinite state sequences that do not contain qsink . Under these conditions,
L(M) is a safety property monitored by M . Next, we introduce assumptions to
register monitorability.

Definition 8. Let P be a property, A an assumption, and s ∈ Pref (A) a finite
trace. The property P is positively k-register determined under A by s iff there is
a register machine M with k registers such that, for all f ∈ Σω, if sf ∈ L(M)∩A,
then sf ∈ P . Similarly, P is negatively k-register determined under A by s iff
there is a register machine M with k registers such that, for all f ∈ Σω, if
sf ∈ A \ L(M), then sf /∈ P .

Definition 9. A property P is k-register monitorable under assumption A iff for
every finite trace s ∈ Pref (A) there is a finite extension r such that P is positively
or negatively k-register determined under A by sr ∈ Pref (A). We denote the set
of properties that are k-register monitorable under A by k-RegMon(A).

In the following, we restrict ourselves to a simple form of register machines in
order to demonstrate how assumptions help for monitoring non-regular properties.

Definition 10. A counter machine is a register machine with the instructions
x+ 1, x− 1, and x = 0 for all registers x ∈ X. We write k-CtrMon(A) for the set
of properties that are monitorable by k-counter machines under assumption A.

Computational resources play an important role in register monitorability. As
proved in [11], for every k ≥ 0 there is a safety property that can be monitored
with k counters but not with k − 1 counters, that is, the set k-CtrMon(Σω) \
(k− 1)-CtrMon(Σω) is non-empty. We now show that assumptions can be used
to reduce the number of counters needed for monitoring.

Theorem 13. Let Σk = {0, 1, . . . , k}. For every k ≥ 1 and 1 ≤ ` ≤ k, there
exist a safety property Pk ∈ k-CtrMon(Σω) \ (k− 1)-CtrMon(Σω) and a safety
assumption A` ∈ `-CtrMon(Σω

k ) such that Pk ∈ (k− `)-CtrMon(A`).

Proof. For every letter σ ∈ Σ and finite trace s ∈ Σ∗, let |s|σ denote the number
of occurrences of σ in s. Let Pk = {f ∈ Σω

k | ∀0 ≤ i < k : ∀s ≺ f : |s|i ≤ |s|i+1}.
We can construct a k-counter machine M that recognizes Pk as follows. For each
0 ≤ i < k, the counter xi of M tracks the difference between |s|i and |s|i+1 by
decrementing with letter i and incrementing with i+1. The machine keeps running
as long as every counter value is non-negative, and rejects otherwise. Notice that
we can rewrite Pk =

⋂k−1
i=0 Si where Si = {f ∈ Σω

k | ∀s ≺ f : |s|i ≤ |s|i+1} and
Si ∈ 1-CtrMon(Σω

k ). Then, for each 1 ≤ ` ≤ k, we can construct an assumption
A` =

⋂`−1
i=0 Si where A` ∈ `-CtrMon(Σω

k ). Since the properties S0 to S`−1 are
true under assumption A`, we only need to monitor the remaining conditions S`
to Sk−1. Therefore, it is not hard to verify that Pk ∈ (k− `)-CtrMon(A`). ut
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5 Using Topology to Construct Assumptions

Let X be a topological space, and S ⊆ X be a set. The set S is closed iff it
contains all of its limit points. The complement of a closed set is open. The
closure of S is the smallest closed set containing S, denoted cl(S). Similarly, the
interior of S is the largest open set contained in S, denoted int(S). The boundary
of S contains those points in the closure of S that do not belong to the interior
of S, that is, bd(P ) = cl(P ) \ int(P ). The set S is dense iff every point in X
is either in S or a limit point of S, that is, cl(S) = X. Similarly, S is nowhere
dense iff int(cl(S)) = ∅. For the operations in relative topology induced by X on
a subspace Y ⊆ X, we use clY (S), intY (S), and bdY (S) where S ⊆ Y .

The safety properties correspond to the closed sets in the Cantor topology on
Σω, and the liveness properties correspond to the dense sets [1]. Moreover, the co-
safety properties are the open sets [6], and the monitorable properties are the sets
whose boundary is nowhere dense [9]. Since these topological characterizations
extend to subsets of Σω through relativization [12,9], we use them to construct
assumptions under which properties become safe, co-safe, or monitorable.

Theorem 14. For every property P , there is a liveness assumption A such that
P ∈ Safe(A) [12]. Moreover, if P is not live, then P ⊂ A; and if P is not safe,
then for every assumption B such that A ⊂ B, we have P /∈ Safe(B).

Proof. Using the standard construction, we can rewrite P as an intersection of a
safety property and a liveness property. Formally, P = PS ∩PL where PS = cl(P )
is the smallest safety property that contains P , and PL = PS \ P is a liveness
property [1]. Let A = PL. We know by Theorem 7 that PS ∈ Safe(A). Since
PS ∩ A = P ∩ A, we also have P ∈ Safe(A). Also, if P is not live, we have
PS ⊂ Σω, and A = PS ∪ P strictly contains P .

Now, let B be an assumption such that A ⊂ B. Then,

clB(P ∩B) = cl(P ) ∩B = PS ∩B

strictly contains P ∩B because there is a trace f ∈ (PS \P )∩B by construction.
It implies that P ∩B is not closed in B, therefore P /∈ Safe(B). ut

Intuitively, the construction in the proof of Theorem 14 removes all traces
in P which have no prefix that negatively determines P . We can alternatively
exclude the traces in P which have no prefix that positively determine P , in
order to turn P into a relative co-safety property.

Theorem 15. For every property P , there is a liveness assumption A such that
P ∈ CoSafe(A). Moreover, if P is not live, then P ∩ A 6= ∅; and if P is not
co-safe, then for every assumption B such that A ⊂ B, we have P /∈ CoSafe(B).

Proof. Let PC = int(P ) be the largest co-safety property contained in P , and
A = P \ PC be an assumption. The assumption A is live since int(P \ PC) ⊆
int(P ) \ int(PC) = ∅. We know by Theorem 8 that PC ∈ CoSafe(A). Then,
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because PC ∩A = P ∩A, we also have P ∈ CoSafe(A). Also, if P is not live, we
have PC 6= ∅, and thus P ∩A 6= ∅ by construction.

Now, let B be an assumption such that A ⊂ B. Then,

intB(P ∩B) = int((P ∩B) ∪B) ∩B = int(P ) ∩B = PC

is strictly contained in P∩B since there is a trace f ∈ (P \PC)∩B by construction.
It implies that P ∩B is not open in B, therefore P /∈ CoSafe(B). ut

Notice that we removed elements from cl(P ) \ P and P \ int(P ) in the above
constructions. The union of these two regions corresponds to bd(P ), and a property
P is monitorable iff bd(P ) is nowhere dense [9], that is, int(cl(bd(P ))) = ∅. Since
boundary sets are closed in general, and cl(S) = S for every closed set S, this
condition is equivalent to int(bd(P )) = ∅. Now, we describe a construction to
make any property monitorable by removing a subset of bd(P ) from Σω.

Theorem 16. For every property P , there is a co-safety assumption A such that
P ∈ Mon(A). Moreover, if P is not live, then P ∩A 6= ∅.

Proof. We want to construct a subspace A ⊆ Σω such that intA(bdA(P ∩A)) = ∅.
Note that bdA(P ∩A) ⊆ bd(P ∩A)∩A and intA(P ∩A) = int((P ∩A)∪A)∩A.
Then, we have

intA(bdA(P ∩A)) ⊆ int((bd(P ∩A) ∩A) ∪A) ∩A.

Since union of interiors is contained in interior of unions and we want the
expression on the right-hand side to be empty, we have

int(bd(P ∩A) ∩A) ∪ int(A) ⊆ int((bd(P ∩A) ∩A) ∪A) ⊆ int(A).

It implies that int(bd(P ∩A) ∩A) ⊆ int(A), and since bd(P ∩A) ∩A and A are
disjoint, we get int(bd(P ∩A) ∩A) = ∅. Then,

int(bd(P ∩A) ∩A) ⊆ int((bd(P ) ∪ bd(A)) ∩A)
= int((bd(P ) ∩A) ∪ (bd(A) ∩A)).

Now, we can pick A to be open to have bd(A) ∩A = ∅, which yields

int((bd(P ) ∩A) ∪ (bd(A) ∩A)) = int(bd(P ) ∩A)
= int(bd(P )) ∩A

since interior of finite intersection equals intersection of interiors and A is open.
At this point, we want int(bd(P )) ∩A = ∅ such that A is open. It is equivalent
to choosing A such that A is a closed set containing int(bd(P )), for which the
smallest such choice is A = cl(int(bd(P ))). Therefore, we let A = cl(int(bd(P ))).
Observe that A is indeed open, i.e., a co-safety assumption. Since we obtained that
intA(bdA(P ∩A)) = ∅ if int(bd(P ))∩A = ∅ and A is open, we have P ∈ Mon(A).

Finally, given that P is not live, we get int(P ) 6= ∅. It implies that bd(P ) ⊂ Σω.
Then, since int(P ) ⊆ bd(P ) ⊆ A and int(P ) ⊆ P , we obtain that P ∩A 6= ∅. ut
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Since both ω-regular and LTL-definable languages are closed under the topo-
logical closure [2,15], the constructions presented in this section can be performed
within the restricted universe of ω-regular or LTL-definable languages. In other
words, given an ω-regular (resp. LTL-definable) property, the constructions from
the proofs of Theorems 14, 15, and 16 produce ω-regular (resp. LTL-definable)
assumptions. Note also that, if P is safe, co-safe, or monitorable under Σω,
respectively, then all three constructions yield A = Σω.

As pointed out in the previous theorems, the constructions are useful only for
certain classes of properties. To demonstrate this, consider a liveness property
P such that P is also live, that is, P is both live and co-live. Such properties
are said to have zero monitoring information [14]. For example, P = �♦a is a
property with zero monitoring information because there is no finite prefix s
such that P is s-monitorable under Σω. Since P is live, we have cl(P ) = Σω,
and since P is live, we have int(P ) = ∅. It follows that bd(P ) = Σω. Therefore,
if we let AS , AC , and AM be assumptions as constructed in Theorems 14, 15,
and 16, respectively, we obtain AS = P , AC = Σω \ P , and AM = ∅.

Next, we present an example of a non-monitorable property that is neither
live nor co-live, and apply the constructions described in this section.

Example 8. Let P = (a ∨ �♦a) ∧ b. One can verify that cl(P ) = b and
int(P ) = a ∧ b by constructing the corresponding Büchi automata. Then, we
also get bd(P ) = (¬a) ∧ b. We now apply the constructions described above.
If we let AS = cl(P ) ∪ P , we get P ∈ Safe(AS) because every finite trace in AS
that satisfies ¬b negatively determines P under AS . If we let AC = P ∪ int(P ),
we get P ∈ CoSafe(AC) because every finite trace in AC that satisfies a ∧ b
positively determines P under AC . Now, observe that cl(int(bd(P ))) = bd(P ).
Then, we have AM = a ∨ (¬b), which yields that P specifies a ∧ b under AM ,
and therefore P ∈ Mon(AM). Note that both AS and AC are live, while AM is
co-safe.

Finally, we apply the construction from the proof of Theorem 16 to make a
non-monitorable liveness property monitorable.

Example 9. Let Σ = {req, ack, reboot, other} be a finite set of observations, and
consider the property

P = (�(req → ♦ack) ∨ (¬ack) U req) ∧ ♦reboot.

The property P is live because cl(P ) = Σω. We can compute its boundary
as bd(P ) = int(P ) = cl(P ). Constructing the Büchi automaton for P and
taking its closure gives us bd(P ) = (ack R (¬req)) ∨�¬reboot. One can similarly
compute int(bd(P )) = ackR(¬req), and observe that cl(int(bd(P ))) = int(bd(P )).
Therefore, we have A = (¬ack)U req, which is indeed a co-safety assumption. The
property P specifies ((¬ack) U req) ∧ ♦reboot under A, therefore P ∈ Mon(A).

Since the assumption A constructed in the proof of Theorem 16 is co-safe,
we get by Theorem 4 that P ∩A is also monitorable. However, as explained in
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Section 2, this is not necessarily the case in general for monitorability under
assumptions. We can look for other ways of constructing an assumption A such
that P is monitorable under A, but P ∩ A is not necessarily monitorable. For
this, Theorem 4 may prove useful, and we aim to explore it in future work.

6 Conclusion

Inspired by the notion of relative safety [12], we defined the concepts of co-safety
and monitorability relative to an assumption. Assumptions may result from
knowledge about the system that is being monitored (as in predictive monitoring
[18]), knowledge about the environment (e.g., time always advances), or knowledge
about other, connected monitors. In further work, we plan to develop a theory of
composition and refinement for monitors that use assumptions, including assume-
guarantee monitoring, where two or more monitors are connected and provide
information to each other (as in decentralized monitoring [4]). We gave several
examples and constructions on how an assumption can make a non-monitorable
property monitorable. In the future, we intend to study the structure of the
weakest assumptions that make a given property monitorable, particularly the
conditions under which such assumptions are unique. Finally, we showed how
an assumption can make a monitorable property monitorable with fewer integer
registers. More generally, carefully chosen assumptions can make monitors less
costly (use fewer resources), more timely (reach verdicts quicker), and more
precise (in the case of quantitative verdicts). In further work, we will study all of
these dimensions to provide a theoretical foundation for the practical design of a
network of monitors with assumptions.
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