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Abstract
Runtime verification (RV) is a lightweight, dynamic technique where a monitor watches a trace of a system

and, if possible, decides after observing each finite prefix whether or not the unknown infinite trace satisfies
a given specification. Theoretically, RV moves the burden from emptiness checking in static verification
to membership checking, an easier problem. This shift introduces the opportunity to use more powerful
formalisms. We suggest using a machine model that enables reasoning about quantitative information
and moving RV to a quantitative setting. Such a setting is attractive because quantitative verdicts can
be approximate and thus compared regarding their precision. We plan to develop a framework for online
and best-effort quantitative monitoring that subsumes (i) a cost-centric theory of monitorability and (ii) a
precision-cost theory of approximate monitoring. Moreover, we aim to extend the framework to monitors
that take corrective action and decentralized monitoring to improve our framework’s practical relevance.

1 Introduction
The impact of software on society is increasing rapidly, along with our dependence on it. This dependence

grows at such a speed that the need for reliable software is rising faster than ever. Research on static verification
(SV) has provided valuable techniques such as model checking and theorem proving for ensuring before deployment
whether a software system is well-behaved. However, these established methods face severe challenges as the
complexity of software systems increases. Although SV tools are also improving, there is still a growing gap
between their capabilities and the complexity of real systems.

Runtime verification (RV) is a lightweight, dynamic verification technique that evaluates the current system
execution with respect to a property. The primary construct of RV is the monitor, which observes inputs and
outputs of the system under scrutiny and issues a verdict in real-time after each observation.

While the increasing software complexity poses challenges for SV, the positive trend in hardware parallelism
makes using dynamic techniques like RV more practical. Although many-core processors and computer clusters
are abundant, it is hard to get the maximal performance out of such systems. Therefore, one can argue that not
all resources will go into performance and some can be used for increased assurance by checking the properties
of systems on the fly.

Instead of considering all possible system behaviors, RV asks whether a single, given behavior satisfies
the specification. Theoretically, this is a shift from the emptiness problem to that of membership. Since the
membership problem is easier to solve, it yields an opportunity for more expressive formalisms. In particular,
we can reason about a variety of quantitative information, which is interesting for a reason beyond being
non-boolean: it can be approximate. To capture this, we use monitors with integer-valued registers.

We advocate for the use of monitors as third-party components that run in parallel to the system and provide
a best-effort assurance on its reliability and robustness. Therefore, keeping practicality in mind, we aim to
provide a theoretical framework for monitoring quantitative properties with various degrees of precision and
capture essential design trade-offs on the “quality” of monitors.
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The rest of this proposal is organized as follows: In Section 2 we discuss the related work and identify the
gap for a theory of infinite state monitors as well as quantitative and approximate monitoring. In Section 3 we
present our main research goals and the assumptions under which we aim to tackle the problems. In Section 4
we describe our recent work that serve as a foundation for the research directions in line with our goals. In
Section 5 we focus on future research directions that stem from our goals and progress.

2 Related Work
Specifying and synthesizing monitors. Synthesizing monitors automatically from given specifications is a
significant research topic in RV. One of the most popular specification languages in RV is linear temporal logic
(LTL). Such propositional approaches to specification and synthesis of monitors are studied extensively over the
years [66, 71, 67, 72, 88].

An alternative, parameterized approach (where events carry data) recently gained popularity. Inspired by
the use of rule-based production systems in artificial intelligence, Havelund [69] proposed rule-based monitoring.
In this setting the system states are considered as a set of facts and the specifications are taken as “rules” of the
form conditions⇒ action, which suits well to the processing of data languages. The monitoring algorithm here
simply tries to match states with conditions efficiently.

Another work in this direction is by Chen and Roşu [43], where they introduced parametric trace slicing,
which enables monitoring specifications where a behavior is associated with each set of data values. Monitoring
in this setting consists of two parts. First, we slice each trace based on the data values associated with it, and
then we check each slice to see whether it it satisfies the specification.

Another significant approach is stream-based RV. Inputs and outputs can be seen as streams of data in
this context, which makes RV a special case of stream processing. The first stream-based framework for RV is
Lola [46] which focuses on monitoring synchronous streams. It has a flexible design where users write stream
expressions that define the relationship between inputs and outputs. Since it is not limited to the boolean values,
Lola enables quantitative analysis of system behaviors. The monitoring algorithm incrementally computes
the output values based on the stream expressions defined by the user and the previous values in the streams.
This line of work is later extended by Finkbeiner et al. with template stream expressions and dynamic stream
generation in Lola 2.0 [57] and for real-time monitoring with asynchronous input streams in RTLola [28].
Another stream-based framework is TeSSLa by Leucker et al. [45, 79, 80] which was initially designed for
asynchronous streams.

Following these works, researchers suggested many methods for synthesizing monitors from a variety of
specification languages. To count a few, extensions of temporal logic with freeze quantifiers [48], counters [51],
first-order quantifiers [70] and time intervals [22]; extensions of finite automata with quantified event parameters
[17], registers [68], and discrete clocks [33]. In the branching-time setting, a prominent line of work is by Aceto
et al. [63, 3, 2, 4], which utilizes the µ-calculus and Hennessy-Milner logic.

We aim to study automata with integer-valued registers, which is a flexible and powerful model, to enable
the detailed analysis trade-offs in monitor design. Although infinite-state monitors have been used in practice
for years, their theoretical properties are not systematically studied before.
Monitorability of specifications. The notion of monitorability bridges the gap between what a specification
means and whether it can be recognized during a system execution. The first definition of monitorability by
Kim et al. [77] focused on detecting violations of a property. It corresponds to a strict subset of safety properties
over infinite words because this definition of monitorability requires the set of finite prefixes of the property to
be co-recursively enumerable while the notion of safety is not limited by computational considerations.

This rather restrictive definition was later generalized by Pnueli and Zaks [88]. The authors defined
monitorability of a property relative to a finite trace considering both satisfactions and violations. According to
their definition, a property is s-monitorable for a finite trace s if there is a finite continuation r such that either
every infinite continuation to sr satisfies the property or every infinite continuation violates it.

Following the definition of Pnueli and Zaks, Bauer et al. [26] defined a property as monitorable if it is
s-monitorable for every finite trace s. This definition is considered the classical definition of monitorability.
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The authors showed that the set of monitorable properties under this definition strictly contains the union of
safety and co-safety properties. This result was later improved by Falcone et al. [53] by showing that it strictly
contains finite, positive boolean combinations of safety and co-safety properties. Moreover, Diekert and Leucker
[49] characterized monitorable properties topologically as sets whose boundary is nowhere dense.

Building on the work of Bauer et al. [25], Falcone et al. [53] proposed a definition of monitorability with
parameterized truth domains instead of using a fixed, three- or four-valued domain for monitoring. This enables
a finer classification of monitorable properties based on the truth domain. The authors show how their definition
of monitorability relates with the safety-progress hierarchy [37] considering several truth domains. Notably,
according to their definition, every (linear-time) property is monitorable in a four-valued domain where the
usual “inconclusive” verdict is split into “currently true” and “currently false” verdicts.

In addition to these definitions, a framework that captures monitorability in both linear- and branching-time
was studied by Aceto et al. [2] and a process-algebraic approach to monitoring by Francalanza [62].

We aim to develop a cost-centric theory of monitorability through a machine model that allows reasoning
about both boolean specifications with quantitative aspects and purely quantitative specifications. Such a
fine-grained approach to monitorability is novel to the best of our knowledge.
Monitoring specifications with quantitative flavor. Quantitative specifications generalize boolean specifi-
cations by mapping infinite traces to a quantitative domain (e.g., integers) instead of true or false. Chatterjee
et al. defined quantitative languages in [40] where they used weighted automata to study several classes
of such languages and investigate classical decision problems such as emptiness, universality, inclusion, and
equivalence. They also studied expressiveness and closure properties of quantitative languages [39]. To account
for quantitative aspects of systems, an extension of LTL with discounting is studied in [7], with averaging in [34],
computation tree logic and LTL with accumulation assertions in [31]. In addition, quantitative properties has
received significant attention also in the probabilistic setting [78, 38, 60, 15, 35], and quantitative frameworks
for comparing traces and implementations for the same boolean specification were studied in [36, 30].

Chatterjee at al. also defined and studied nested weighted automata [42] where a “master” automaton
spawns “slave” automata for the computation of sub-components of a property and combines the values returned
over finite prefixes by the slaves to approximate the property value of an infinite trace. Later, they defined and
studied quantitative monitor automata [41] where they augment weighted ω-automata with monitor counters or
weighted automata themselves. They show that the two augmentations yield an equivalent expressive power
when the nested formalism has a bound on the number of slaves. An equally expressive logic was proposed
in [84]. Despite its potential for a use in RV, these works mainly focused on decidability and rather coarse
expressiveness issues.

Another significant line of work in this direction is by Alur et al. In [9], they defined cost-register automata
which serve as an effective specification language that enables the analysis of “regular” functions from finite
traces to cost domains. Moreover, in [11], they defined quantitative regular expressions which is an alternative
abstraction to cost-register automata with an equivalent expressive power. They built on their previous work
by proposing a modular framework based on weighted automata augmented with nesting and parallelism for
processing streams of data in [12] and a model called data transducer which has the same expressive power
as cost-register automata while being exponentially more succinct in [13]. Most recently, they developed a
quantitative stream processing theory in [10] using cost-register automata where they also established that
weighted automata is a special case of cost-register automata. Although all these works consider the quantitative
aspects of system specifications and verification, they mainly focus on runtime decidability issues for boolean
specifications over streams of data events, but they do not consider approximate monitoring at varying degrees
of precision.

A relevant collection of literature on quantitative approaches in RV features primarily the signal temporal
logic (STL) [83]. In [50], the authors study the notion of robustness for STL and a method for its efficient
computation. Quantitative monitoring of STL by using edit distance between behaviors is studied in [76], which
also has a flavor of approximate monitoring due to the use of quantization of real-valued signals. A first-order
logic for studying the specification of real-valued temporal behaviors is proposed in [16]. Several trade-offs
regarding monitor quality also arise in this context, mostly due to the processing of continuous signals. For
example, it is shown in [1] that sampling rate and the quality of robustness computation is tightly connected.
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We aim to develop a theory for monitoring generic quantitative properties with a focus on precision-cost
trade-offs. A rigorous study on this direction has not been carried out before.
Use of monitors for real systems. Passive monitors designed for systems with a single computing unit have
limited practical relevance. Especially in an online setting, active monitoring can be helpful by steering the
system away from undesired situations. Also, due to the abundance of distributed systems, it is also necessary
to ensure that our framework can handle such systems effectively.

The branch of RV focusing on active monitors is called runtime enforcement (RE). In RE, the main goal is
to actively ensure that the system conforms to the desired property during runtime, while complying with the
two important constraints: soundness (modified behaviors must be correct) and transparency (correct behaviors
must not be modified). The notion of enforceability connects what a specification means and whether it can be
imposed during a system execution. Schneider proposed the model of security automata for enforcement [90].
This model essentially halts the system execution whenever it recognizes a bad prefix, which means that the
set of enforceable properties are limited to safety properties. Later, the model of edit automata was proposed
and studied by Ligatti et al. [27]. In addition to halting on bad prefixes, this model can insert and suppress
events. Notably, these abilities enable enforcing also some liveness properties [81, 82]. Falcone et al. defined and
studied generalized enforcement monitors [56] which build on the previous models. They also showed that the
set of enforceable properties are exactly the response properties [53] of the safety-progress hierarchy [37]. In
addition, models of enforcement with memory constraints were studied in [59, 92, 29], for timed properties in
[89, 20, 85], with predictive semantics in [87, 86], in the branching-time setting in [5, 6].

Decentralized monitoring is studied first by Bauer and Falcone [24]. The authors developed a rewriting
method for automatically distributing LTL specifications under the assumption of a global clock, which was
later generalized by Falcone et al. to regular specifications [52]. The main advantage of this method is the lack
of a central monitor, and thus less communication overhead. Similar approaches in this direction is further
studied for real-time systems [18], with a hierarchical approach to communication in [44], with a stream-based
approach in [47], with an online approach using low-resolution global clocks in [19]. The asynchronous setting
for safety monitoring was studied in [91], a process-algebraic method in [64], an adaptive approach for spatial
specifications in [14]. Monitoring of distributed systems where parts of the system can fail was considered in
[21, 23, 32, 61]. Decomposition of monitors and specifications was investigated in [54, 65].

We aim to carry the theories of RE and distributed monitoring to the quantitative setting while enabling the
consideration of precision-cost trade-offs and approximations for specifications with quantitative aspects, both
of which are novel in RV.

3 Objectives and Assumptions
We set two main research goals based on our observations presented in the previous sections.

Cost of monitorability. Since we can move beyond formalisms with decidable emptiness to those with
decidable membership, we model our monitors as automata with integer-valued registers that operate in
real-time (i.e., bounded number of monitor operations per system operation) and verdicts in a quantitative
domain. In this setting, we aim to explore the “cost” of monitorability systematically. One dimension of cost
is the resource use, e.g., number of registers or types of operations a monitor can carry out. Another is time,
e.g., number of operations per observation or number of observations needed to reach a definite verdict. This
exploration also includes the cost-bounded monitor synthesis problem: given a property and a cost limit, how
can we construct a monitor for the given property within the limit? Two related directions onto which the
cost-centric theory should extend are (i) quantitative enforcement monitors that can take corrective actions on
the system, and (ii) decentralization of quantitative monitors and specifications.
Precision of approximate monitoring. Quantitative specifications come in different forms, e.g., purely
quantitative as in maximal response time, or in combination with boolean specifications as in discounted safety.
Despite the different forms, there is always a natural basis for approximate monitoring. We aim to build a
framework for monitoring that captures the notions of precision and robustness in a generic quantitative setting.
As these notions raise many questions regarding monitor resources, the framework must enable the analysis
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of precision-cost trade-offs, which we take as a central design criterion for monitors. Moreover, it should be
sufficiently flexible to extend easily to synthesis, enforcement, and decomposition problems. A meticulous study
on this front is needed to facilitate the practicality of quantitative monitoring.

Monitors can be used in many different ways – see [55] for a detailed classification of monitoring settings. In
line with our goals, we make the following assumptions:

1. System components are black-boxes.

2. Monitors are deterministic and operate in real-time.

3. Monitors are isolated from system components.

4. Monitors must be as non-intrusive as possible.

4 Progress
In this section we describe our recent work in algorithmic monitoring and briefly discuss our contributions in

line with the research goals presented in previous sections.

4.1 Safety monitoring with integer-valued registers [58]
While finite-state monitors have been studied extensively, in practice, monitoring software also makes use of

unbounded memory. We define a model of automata equipped with integer-valued registers which can execute
only a bounded number of instructions between consecutive events, and thus can form the theoretical basis for
the study of infinite-state monitors. We classify these monitors according to the number of available registers,
and the type of register instructions.

A register monitor is equipped with a finite set of control locations, a finite set of registers, and an instruction
set consisting of arithmetic operations according to which the registers are tested and updated. It operates
over a finite alphabet and it is deterministic. A configuration of the monitor consists of a control location
and a register valuation. A transition is a relation between configurations such that (i) the monitor moves
from the previous control location to the next control location with the given input letter, (ii) the previous
register valuation satisfies the test associated with the transition, and (iii) the next register valuation is in
accordance with the previous valuation and the updates associated with the transition. A run is a valid sequence
of transitions, and an infinite trace is accepted by the monitor if it has a run. The language of the monitor is
the set of infinite traces accepted by the monitor. In Figure 1 below we give an example of a register monitor.

#
x← 1

a
x← 2x

b
x← 2x+ 1

a
y ← 2y

b
y ← 2y + 1

#, x = y, y ← 1

#
y ← 1

Figure 1: A 〈1, +1, +, =〉-monitor recognizing the language L =
⋃

w∈Σ∗ #(w#)ω ∪ #(w#)∗Σω. This language consists
of infinite sequences starting with # in which one unique finite word over Σ = {a, b} repeats, each consecutive pair of
occurrences separated by #. The language L is recognized by the real-time adder monitor with 2 registers. The part of
a word before a separator, if any, is encoded in x using a binary representation. Later occurrences of finite words are
encoded in y. At every separator the encoding of the two words must match.

First, we focus on relatively simple 〈+1,=〉-monitors, called counter monitors. We show that for every
k ≥ 1 there is a real-time (k + 1)-counter monitor without an equivalent k-counter monitor. For this, we
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consider the alphabet Σk = {0, 1, . . . , k} and the property Pk = {f ∈ Σω
k | ∀ 0 ≤ i < k : ∀s ≺ f : |s|i ≥ |s|i+1}

where |s|i denotes the number of occurrences of letter i ∈ Σk in s ∈ Σ∗k. The property Pk is recognizable by
a (k + 1)-counter monitor where each counter keeps track of occurrences of one letter and the transitions are
guarded with appropriate tests. We show that there is no k-counter monitor to recognize Pk, which gives us an
expressiveness hierarchy based on the number of counters.

We consider several variants of counter monitors. In particular, we show that instruction sets 〈+1,=〉,
〈+1,≥〉, and 〈−1,+1,= 0〉 are equally expressive. A copy update features a register variable which occurs on
the right-hand side of more than one assignment, and a reset update is an assignment of a register to 0. We also
show that the copyless counter monitors are strictly less expressive than (copyful) counter monitors. Moreover,
for every (copyful) counter monitor, there is a time-equivalent copyless reset-counter monitor.

Next, we focus on 〈1,+,=〉-monitors, called adder monitors. The ability to compute sums of registers gives
adder monitors dramatically more expressive power, and notably the ability to encode the prefixes of a word
in real time, as shown in Figure 1. Also, we show that the language L in Figure 1 cannot be recognized by
any counter monitor, establishing that adder monitors are strictly more expressive. However, interestingly, the
language L′ =

⋃
n,m∈N #(an#∪ am#)ω ∪#(an#∪ am#)∗aω can be recognized by a real-time 3-counter monitor

but not by a real-time 2-adder monitor.
Considering the adder variants, we show that 〈1,+,=〉-monitors and 〈1,+,−,= 0〉-monitors are equally

expressive. Surprisingly, we show that in copyless monitors, adders are not more expressive than counters. In
particular, any copyless reset-adder monitor with k registers can be simulated in real time by a (copyful) counter
monitor with 2k registers.

Beyond adders, we look at 〈0, 1,+,−,≥〉- and 〈0, 1,+,−,×,≥〉-monitors, called linear and polynomial
monitors, respectively. For every k ∈ N, linear monitors with 4k registers can simulate Turing machines with k
tapes in real-time. Despite their powerful instruction set, polynomial monitors cannot recognize the property
H = #Σ′ω \

⋃
w∈Σ∗(#Σ∗)∗#w(#Σ∗)∗#w#Σ′ω, where Σ = {a, b} and Σ′ = Σ ∪ {#}. When finite words over Σ

represent numbers in binary notation and # separates words into numbers, the property H represents sequences
in which no number repeats.

4.2 Leveraging prior knowledge in monitoring [74]
We extend the classical definition of monitorability [88, 26] to account for assumptions. Intuitively, an

assumption limits the universe of possible traces: when there are no assumptions the system can produce any
trace in Σω, but under an assumption A, all observed traces come from the set A. For a boolean property P , an
assumption A, and a finite prefix s of some trace in A (denoted s ∈ Pref (A)), we say that P is positively (resp.
negatively) determined under A by s iff, for every infinite extension f , if sf ∈ A then sf ∈ P (resp. sf /∈ P ).
Then, we say that

• P is s-monitorable under assumption A iff there is a finite continuation r such that sr ∈ Pref (A) positively
or negatively determines P under A.

• P is monitorable under A iff it is s-monitorable under A for all finite traces s ∈ Pref (A). We denote the
set of properties that are monitorable under A by Mon(A).

Note that when A = Σω, our definitions are equivalent to the classical definition of monitorability.
We show that for every assumption A, the set Mon(A) is closed under boolean operations. However, when

it comes to operations on assumptions themselves, the picture is drastically different. We demonstrate that
monitorability is not preserved under complementation, intersection, nor under union of assumptions. Moreover,
monitorability is neither downward nor upward preserved in general, but for each direction we identify a special
case in which monitorability is preserved.

With a focus on monitorability, we extend the notion of relative safety [73] to finite boolean combinations of
safety properties. We show that, for every assumption A, finite boolean combination of safety properties relative
to A are monitorable under A.

Using the counter hierarchy described in Section 4.1, we show how assumptions can save resources. In
particular, we prove that for every k ≥ 1 and 1 ≤ ` ≤ k there is a property Pk that is k-counter monitorable
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under Σω and a safety assumption A` such that A` is `-counter monitorable under Σω and Pk is (k − `)-counter
monitorable under A`.

Finally, we describe ways to construct assumptions that make given properties safe, co-safe, or monitorable.
The constructions are purely topological and rely on relativization. Let X be a topological space, and S ⊆ X be
a set. The set S is closed iff it contains all of its limit points. The complement of a closed set is open. The
closure of S is the smallest closed set containing S, denoted cl(S). Similarly, the interior of S is the largest open
set contained in S, denoted int(S). The boundary of S contains those points in the closure of S that do not
belong to the interior of S, that is, bd(P ) = cl(P ) \ int(P ). The set S is dense iff every point in X is either in S
or a limit point of S, that is, cl(S) = X. Similarly, S is nowhere dense iff int(cl(S)) = ∅. The safety properties
correspond to the closed sets in the Cantor topology on Σω, and the liveness properties correspond to the dense
sets [8]. Moreover, the co-safety properties are the open sets [37], and the monitorable properties are the sets
whose boundary is nowhere dense [49]. We show that for every property P there are unique weakest liveness
assumptions A and B such that P is safe under A [73] and co-safe under B. Moreover, we show that for every
property P there is a co-safety assumption A such that P ∈ Mon(A).

4.3 Monitoring quantitative properties precisely and approximately [75]
The main contribution of this work is the formalization of a framework for monitoring quantitative properties

in which precision-resource trade-offs can be analyzed. A quantitative property is a function from Σω to a value
domain D which is a complete lattice. A verdict is a function from Σ∗ to D, and it represents how a monitor
behaves. On an infinite trace, the verdict function yields an infinite verdict sequence. Since the monitor assigns
a verdict value to every finite prefix of an infinite trace, we take the verdict value at the limit as the monitor’s
“estimate” for the property value. These estimates can under- or over-approximate property values which we
capture by taking lim sup and lim inf of verdict sequences. Let us call the lim sup of a verdict sequence the
upper-estimate provided by the verdict function, and the lim inf the lower-estimate. For a property p and a
verdict v, we say that

• p is universally monitorable from below (resp. from above) by v iff for every infinite trace the upper-estimate
(resp. lower-estimate) equals the property value.

• p existentially monitorable from below (resp. from above) by v iff (i) for every infinite trace the upper-
estimate of v is at most (resp. at least) the property value, and (ii) for every finite trace there is an infinite
extension on which the upper-estimate (resp. lower-estimate) equals the property value.

• p approximately monitorable from below (resp. from above) by v iff for every infinite trace the upper-estimate
(resp. lower-estimate) is at most (resp. at least) the property value.

Considering two verdict functions v and u that monitor a property p from below (resp. from above), we say
that v is more precise than u iff (i) for every infinite trace the upper-estimate (resp. lower-estimate) of v is
greater (resp. less) than or equal to that of u, and (ii) there is an infinite trace for which the upper-estimate
(resp. lower-estimate) of v is strictly greater (resp. less).

Monotonic verdict functions are of particular interest because the estimates they provide for a quantitative
property value are always conservative and can improve in quality over time. We characterize the classes of
properties that are universally monitorable by monotonic verdicts. Let p be a quantitative property and, for
every s ∈ Σ∗, let νp(s) = sup{p(sf) | f ∈ Σω} and µp(s) = inf{p(sf) | f ∈ Σω}. Similarly as for verdict
functions, given an infinite trace, νp and µp produce infinite sequences. We say that p is continuous (resp.
co-continuous) iff for every infinite trace the property value equals the limit value of the infinite sequence
given by νp (resp. µp). Intuitively, the continuous and co-continuous properties constitute well-behaved sets
of properties in the sense that, to monitor them, there is no need for speculation. For example, considering a
continuous property, the least upper bound can only decrease after reading longer prefixes; therefore, a verdict
function monitoring such a property can simultaneously be conservative and precise. We make this connection
more explicit and show that continuous (resp. co-continuous) properties satisfy the desirable property of being
universally monitorable by monotonically decreasing (resp. increasing) verdict functions.
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Our framework conservatively generalizes several well-known definitions of boolean monitorability [88, 26,
53, 3] and the safety-progress hierarchy [37]. Table 1 below summarizes a part of these relations.

Universally monitorable from below Existentially monitorable from below
D Mono. incr. Unrestricted Mono. incr. Unrestricted
B ∅ or Σω Obl ∅ or Σω Obl
B⊥ Safe ∩ CoSafe Obl Mon at least Mon ∪ React
Bt CoSafe Resp any P ⊆ Σω any P ⊆ Σω

Bf Safe Pers any P ⊆ Σω any P ⊆ Σω

Table 1: Correspondence between classes of boolean properties and quantitative monitorability. The set of classically
monitorable properties are denoted by Mon. Value domains are (i) B = {T, F} where T and F are incomparable, (ii)
B⊥ = B ∪ {⊥} where ⊥ < T and ⊥ < F, (iii) Bt = {T, F} where F < T, and (iv) Bf = {T, F} where T < F.

Finally, we extend our definition of register monitors in Section 4.1 with an output function that maps every
configuration of the machine to a value in D and serves as a verdict function. In particular, we require that each
output is a value stored in one of the registers, zero, or infinity. Then, we observe the relation between resources
of a register monitor and its precision. We focus on the number of registers of a counter monitor and extend the
counter hierarchy described in Section 4.1 to the quantitative setting. We show that for every k > 1 there is a
quantitative property qk such that (i) it requires k counters for universal monitoring, and (ii) for every monitor
for pk with ` < k counters, there is a more precise monitor with `+ 1 counters. We generalize this theorem by
extending Pk from k quantities to natural numbers and encoding them in binary. Specifically, we show that
there exists a property q such that (i) no number of counters is sufficient for universal monitoring, and (ii) for
every monitor for q with k counters, there is a more precise one with k + 1 counters.

Another resource subject to the trade-off is the register operations. For example, the ability to add two
registers enables growing register values exponentially, while counting can grow only them linearly. It indicates
that there are some properties that are universally monitorable by adder monitors and not by counter monitors.
Although we do not explore this dimension in detail, we conjecture that many results from Section 4.1 are again
relevant and can be extended to the quantitative setting.

5 Future Work
A theoretical framework that enables the analysis of precision-cost trade-offs in monitoring must address

several aspects of monitors such as expressiveness, synthesis, decomposition, and refinement. Below we identify
and discuss several relevant directions that stem from our research objectives and previous work. For each
direction, we give examples of specific questions that we aim to answer.
Monitor resources. One of the central questions in RV is that of monitorability. The existing theories
only broadly classify properties as monitorable or non-monitorable. We plan to take it a step further and
systematically study how monitorability and monitor resources relate. Together with the real-time restriction,
the use of integer-valued registers yields a rich resource theory. Our exploration is ongoing (see Section 4.1 or
[58]) but far from complete. For example, we know that every additional counter register gives more expressive
power in monitorability, in contrast to the theory of computability. Moreover, the security property “no number
repeats” is not monitorable in real-time, even if the monitors can add and multiply. We aim to investigate
relations of this nature more in-depth.

• Is there a real-time adder hierarchy similar to the counter hierarchy? In other words, is it true that
for every k ∈ N there exists a real-time (k + 1)-adder monitor without an equivalent real-time k-adder
monitor?

• What is the relation between monitor resources and how “quickly” a monitor reaches a positive or negative
verdict? Is there a fine-grained hierarchy of properties regarding such time constraints?
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• Is there a characterization of boolean properties that are monitorable by certain subclasses of register
monitors? For example, which properties are monitorable by counter monitors and which by adders?

• How do we synthesize a “minimal” register monitor for a given boolean specification?

Quantitative monitoring. A quantitative property assigns a value to an infinite trace while a monitor does
so to a finite prefix. One needs to bridge this gap to define what it means for a quantitative property to be
monitored. We propose a generalization of existing notions of boolean monitorability to the quantitative setting
(see Section 4.3 or [75]). Taking upper or lower limits of verdict sequences as “estimates” provided by monitors,
we define several modalities of quantitative monitorability based on how property values and estimates relate.
For example, the maximal response time of a server is universally monitorable because the estimates of a monitor
that computes maximal response time over finite prefixes always converge to the property value. Note that the
estimates of such a monitor are monotonically increasing. On the other hand, we need non-monotonic estimates
for monitoring the average response time. Building on this framework, we aim to explore classes of monitorable
quantitative properties and study the monitor synthesis problem.

• Which quantitative properties are universally monitorable by non-monotonic verdict functions?

• Which quantitative properties are universally monitorable by which register monitors? In other words,
is there a characterization of functions that are universally monitorable by counters, adders, or more
powerful monitors?

• Is there a topological characterization of quantitative properties that relates with our definitions of
quantitative monitorability?

• Given a quantitative property p and a certain amount of resources (type of register operations and number
of registers), how do we synthesize a register monitor that universally or existentially monitors p from
below or above?

Approximate monitoring. Compared to boolean monitors, the quantitative counterparts can be approximate
in more interesting ways as the value domain allows the comparison of estimates beyond true and false. Crucially,
this enables the comparison of monitors in several dimensions. For example, a monitor can be (i) more precise
than another by providing better estimates (see Section 4.3 or [75]), (ii) faster than another by approaching the
property value more quickly, (iii) more frugal than another by using fewer resources, and (iv) stronger than
another by making weaker assumptions about the system and the environment (see Section 4.2 or [74]). We aim
to explore these dimensions and their relations to provide more insight into relevant trade-offs in monitor design.

• Can we strengthen our results on precision and number of counters? For example, is there a characterization
of properties that yield a precision hierarchy as discussed in Section 4.3? Does such a hierarchy apply to
register monitors with more powerful operations?

• How can we synthesize approximate monitors for a given specification? Instead of relative qualities, can we
talk about “absolute” precision, speed, frugality, or strength? Moreover, how can we use these comparison
dimensions for the synthesis of approximate monitors?

• What is the relation between monitor resources and how “quickly” a monitor reaches a “precise” verdict?

• How does precision and speed of a monitor relate? It seems that “faster” implies “at least as precise” but
under which conditions do we have “faster” implies “more precise”?

• What does it mean that a quantitative property is monitorable under an assumption? What is the structure
of assumptions that make properties monitorable more precisely with the same amount of resources? What
kind of assumptions help make monitors more frugal? How do we synthesize a most precise monitor under
an assumption? What is the weakest assumption that makes a property universally monitorable?
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Enforcement monitors. So far, we only considered passive monitors that observe a system and report their
verdicts. Instead, we can consider monitors that also take corrective action to steer the system away from
undesired situations, which are called enforcement monitors. Such monitors are augmented with a correction
function that enables modifying inputs and outputs of the system. A significant criterion in enforcement
is parsimony: an enforcement monitor must modify as few data values as possible. Therefore, besides the
dimensions that carry from passive monitors, an enforcement monitor can be more parsimonious than another
by modifying fewer data values. We aim to extend our framework to capture the enforceability of quantitative
properties and similar trade-offs as for passive monitors.

• What does it mean that a quantitative property is enforceable? How does the enforceability of a quantitative
property relate with monitor resources? Which properties are enforceable at which degrees of precision or
parsimony?

• Given a property, how can we design an enforcement monitor that is as parsimonious as possible, as precise
as possible, as fast as possible, as frugal as possible, and as strong as possible?

Decentralized monitoring. Complex software systems often consist of multiple distributed components.
System specifications then depend on the behaviors of these individual parts. For such systems, communication
within the network is generally a bottleneck, which hinders the practicality of central monitors. Thus, we need a
decomposition theory for approximate quantitative monitoring and enforcement. Beyond decomposition, we can
study assume-guarantee monitoring, where a local enforcement monitor can assume that the others succeed in
enforcing their policies and use it as an assumption to improve its precision, speed, frugality, or parsimony. We
aim to establish a decomposition theory of monitors that addresses precision-cost trade-offs as well as a theory
of assume-guarantee monitoring.

• Given a global specification S that is monitorable with a certain cost, is there a set of local specifications
such that (i) they are equivalent to S in conjunction, and (ii) each local specification can be monitored
with a smaller cost? Can we use operations beyond simple boolean combinations to capture asynchrony
of components? Can we augment our machine model for this problem to capture the communication
complexity in such systems?

• Does every enforceable distributed policy yield an assume-guarantee structure? If not, which policies do?
Can we make non-enforceable policies enforceable under an assumption? If so, can this assumption be
enforced itself?
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