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Abstract

Quantitative properties offer a framework for specifying and verifying system behaviors beyond
the traditional boolean perspective. For example, while a boolean property may specify whether
a server eventually grants every request it receives, a quantitative one may map each server
execution to its average response time. This quantitative view is relatively well-studied in the
context of static verification. However, although such properties often appear in practice as
performance or robustness measures in a dynamic verification context, a general theoretical
framework for their analysis and classification from a monitoring perspective is still missing.

In this thesis, we aim to develop such a framework that takes resource-precision tradeoffs
of monitors as a central consideration. We present the first theory of monitorability for
quantitative properties where monitors can be naturally approximate and compared regarding
their precision and resource use. In particular, we show that additional monitor resources such
as registers or states lead to strictly better approximations for some properties. To enable such
analyses in a machine-model independent way, we describe an abstract notion of monitors that
can be instantiated with concrete models of monitors. Within this framework, we study how
abstract monitors behave and identify classes of properties amenable to approximate monitoring
with resource-precision considerations. We then extend the boolean safety-liveness dichotomy
and safety-progress hierarchy to the quantitative setting with a monitoring perspective. In
particular, we prove that every property is the pointwise minimum of a safety property and a
liveness property, and properties that are both safe and co-safe can be approximately monitored
arbitrarily precisely using only finitely many states. We also study the classes of quantitative
properties definable by finite-state quantitative automata and provide algorithms for deciding
their safety or liveness as well as their safety-liveness decompositions. Finally, we present
the first general-purpose tool for automating the analysis, verification, and monitoring of
quantitative automata.
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CHAPTER

Introduction

1.1 Motivation

Modern software systems. From our pockets to critical infrastructure, software systems are
everywhere in today's world. On top of this all-encompassing presence, software systems have
grown increasingly complex over the decades. Contemporary software, in particular, typically
consists of large code bases, interacts extensively with other software, and evolves continuously.
Furthermore, the past decade has witnessed a paradigm shift toward incorporating more and
more learned components into these systems. Today, there is even a trend toward building
the remaining non-learned parts of such systems by learned systems. These developments
together lead to complexity growing at an unprecedented rate and raise questions about how
we can trust such complex systems.

Static verification. The problem of trust in software systems is not new; formal methods
for enabling trust have been a research focus for decades [McC60, Lan64, Flo67, Hoa69,
SS71, Rey72, Dij76, CC77, SC82, HT87, JGS93, Clag7]. Static verification methods analyze
a program's code or mathematical model without executing it. Crucially, these methods aim
to shift trust from programmers’ abilities to formal proofs about programs, leaving no room
for doubt once such proofs are obtained. Developments in this area have resulted in numerous
success stories, not only in academic research but also in practical applications [LPY97, Lam02,
CCGT02, KNP11, DJKV17, DMB08, BBB™22, Tea24, DMKAT15].

Dynamic verification. At the other end of the spectrum, we have dynamic verification
methods that analyze a program’s behavior during its execution. Today, dynamic verification is
often used interchangeably with testing, which, although effective at uncovering programming
errors, lacks the ability to provide formal guarantees. After all, testing can show only the
presence of bugs, not their absence. Nevertheless, various forms of testing have long been
established as an efficient first step toward improving trust in software systems [DJK™99,
Ber07, GLM*08, AO16]. Leading information technology companies actively employ both
static and dynamic verification methods today to improve trust in the performance, reliability,
and safety of their products [BBCT06, CDD*15, RCF*20, NRZ*15, BJA*21].

Challenges. The ambitious goals of formal verification face serious scalability challenges
today. Although verification methods have consistently improved over the years [CGJ*00,

1
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AHKO02, McM03, BHHK03, CKL04, NOT06, DKW08, KBD*17, GMDC*18, BK08, CHV'18],
the complexity of software systems has increased even faster. Moreover, even systems that
are within our verification capabilities might still be unverifiable because they are closed
source. This creates a gap between real-world software systems and those amenable to static
verification. On the other hand, most dynamic verification methods offer no formal guarantees
despite their effectiveness in finding bugs. To help close these gaps, we advocate for a
compromise: lightweight and best-effort yet formal methods that sacrifice completeness to
make a dent in the trust problem.

Monitoring and runtime verification. Runtime verification (a.k.a. monitoring) is a
dynamic verification method in which a monitor observes a system during its execution and
evaluates it against a formal specification. In this way, it bridges the mathematical rigor of
static verification with the efficiency of testing. Runtime verification has received significant
attention in both research and practice, especially for improving trust in complex, black-box,
safety-critical systems [HR04a, HR04b, MN04, Don10, ALFS11, DDS17, NY20].

Specifying system behaviors. The traditional approach for specifying and verifying system
behaviors has been boolean in nature: system executions are either correct or incorrect,
specifications are either met or violated. Such a binary view, although proved valuable, falls
short in providing a nuanced framework for evaluating system behaviors, considering both
correctness and performance. In particular, this lack of granularity limits reasoning about how
well or how poorly systems meet specified criteria and how systems perform regarding given
performance measures, which are often central in contemporary software systems.

Quantitative properties. Instead of partitioning the set of all executions into correct
behaviors and incorrect behaviors, the quantitative view considers specifications as functions
from system executions to richer value domains, e.g., the set of reals [CDH10b]. Therefore,
quantitative properties enable a nuanced way to specify and verify system behaviors. For
example, such specifications can express absolute performance metrics like average response
time or worst-case memory usage, or relative correctness measures indicating the degree of
satisfaction or violation. This potential has been recognized in a wide range of applications.

» Performance analysis: Responsiveness and latency in web services and cloud infrastruc-
tures.

» Resource utilization: Memory and energy consumption in embedded software and mobile
applications.

» Quality of service: Satisfaction degree of service-level agreements in telecommunications
and computer networks.

= Safety margins: Proximity to safety thresholds in autonomous systems such as self-driving
cars and robotics.

Opportunities. We believe that monitors can be used as third-party components offering
best-effort assurances to improve trust in complex software systems, and thus help narrow
the verification gap. From a theoretical perspective, runtime verification moves the burden
from inclusion checking to membership checking—an easier problem. Nonetheless, although
infinite-state monitors are used frequently in practice, little effort went into exploring the
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theory of infinite-state monitors, including those for quantitative properties. In addition,
quantitative monitors can be naturally approximate, in which case monitor precision can
be traded against monitor resources. We argue that there is an opportunity to establish
a framework for monitoring and classifying quantitative properties, explicitly incorporating
tradeoffs between resource use and precision. Such a framework should combine theoretical
rigor with effective automation for both monitoring and classification tasks.

1.2 Related Work and Thesis Goals

In this section, we present a high-level overview of the relevant literature to put the goals of
this thesis into context. Detailed discussions are deferred to corresponding chapters in the
main body of the thesis.

1.2.1 Specifying and Synthesizing Monitors

The formal specification of system properties and the automated synthesis of monitors from
such specifications are central topics in monitoring. We can classify specifications, rather
coarsely, as declarative (e.g., temporal logics) or executable (e.g., state machines). While
declarative specifications are usually more compositional, executable specifications often admit
more straightforward monitoring algorithms [BFFR18].

Linear temporal logic (LTL) and finite-state automata have long been the standard in system
specification and verification. Naturally, they were also studied extensively in the context
of monitoring, e.g., for synthesizing monitors in the form of automata from LTL specifi-
cations [GPVW95, HR01, GHO1, HR02, FS04, HR04b, PZ06]. Later work also focused on
more expressive temporal logics, including extensions with freeze quantifiers [DL09], counters
[DLT15], first-order quantifiers [HP18] as well as time-constrained temporal operators [TR05]
and richer first-order quantification [BKMZ15]. Similarly, various models of automata beyond
finite-state have been also used for specifying and executing monitors, for example, models with
quantified event parameters [BFH12], registers storing data values [GDPT13], and discrete
clocks [BNF13]. In the branching-time setting, a prominent line of work is by Aceto et al.
[FAAT17, AAFT19b, AAF*19a, AAF*21a], which uses the p-calculus and Hennessy-Milner
logic.

An important consideration among these extensions is the handling of events where observations
are associated with data values (from a potentially infinite set). Five notable approaches for
tackling the monitoring problem in this context have been surveyed in [HRTZ18], and we
summarize them below.

Stream-based monitoring [dSST05, BFS™20, FFST19, CHL*18, LSS*18, LSS*19] frames the
monitoring problem as a special case of stream processing by treating the monitor inputs and
outputs as data streams. These frameworks typically feature a flexible design where users
write stream expressions defining the relationship between inputs and outputs. The monitoring
algorithms then incrementally compute the output values based on these expressions and the
previous values in the streams.

The parametric trace slicing method [AACT05, CR09, RC12, BFH*12, JMLR12, RCR15]
projects an execution trace into subtraces that correspond to specific sets of data values.
Essentially, the slicing filters the original trace to consider only the events that are relevant to
a particular parameter valuation. The monitor, therefore, can evaluate the behavior for each
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parameter instance separately. Monitoring in this setting consists of two phases: first, slicing
the trace according to data values of events, and second, checking each slice individually
against the specification using standard approaches. Thanks to efficient indexing techniques,
parametric trace slicing admits a relatively low monitoring overhead.

The rule-based monitoring approach [BRH08, Hav15] was inspired by rule-based production
systems in artificial intelligence. In this approach, system states are treated as sets of facts,
and specifications are expressed as rules of the form conditions = action, which naturally
supports processing data languages. The monitoring algorithm then consist in matching the
current state against the rule conditions.

First-order temporal logics [BHKZ12, BKMZ15, BKZ17, BDH*20] extend traditional temporal
logics with quantification over data, allowing one to specify properties that relate the data
values within events. The monitoring algorithm translates these formulas into relational
algebra expressions (i.e., efficient operations such as filtering, projecting, and joining sets of
tuples [GMUWO08]) to enable the reuse of intermediate results when checking data-dependent
properties. An alternative approach [HPU20] uses instead binary decision diagrams to represent
sets of assignments, which results in a faster monitoring procedure.

Monitoring modulo theories [DLT13b, DLT16] generalizes monitoring procedures from propo-
sitional temporal logics to a setting where data constraints are taken from a specific first-order
theory. Since the temporal aspect of the specification and the data aspect are decoupled, the
two constraints can be treated separately: the temporal aspect is handled by established tech-
niques from the underlying temporal logic, and the data aspect by SMT solvers implementing
decision procedures for the underlying first-order theory.

Various combinations of these methods have been also considered, for example, extensions of
stream-based monitoring with slicing [FFST16, GS21] as well as first-order temporal logics
with slicing [RR15] and stream processing [RST24].

Opportunity. Although some of these approaches are flexible enough to enable the quan-
titative analysis of system behaviors beyond finite-state, the theoretical properties of such
specifications and monitors have not been thoroughly studied before.

1.2.2 Theories of Monitorability

Safety and liveness [Lam77, AS85] are fundamental concepts in computation and serve as
the foundation for many verification paradigms. The safety-liveness classification of boolean
properties characterizes whether a property can be falsified by observing a finite prefix of
an infinite computation trace—always for safety, never for liveness. The orthogonality of
safety and liveness leads to the following celebrated fact: every property can be written as
the intersection of a safety property and a liveness property [AS85, AS87]. This means that
every property can be decomposed into two parts: a safety part, which is amenable to simple
verification techniques such as invariants, and a liveness part, which requires heavier verification
paradigms, such as ranking functions.

From a topological perspective, safety and liveness properties have natural characterizations in
the Cantor topology on infinite traces: safety properties correspond to closed sets, while liveness
properties are dense [AS85]. The Borel hierarchy induced by this topology—the safety-progress
classification [CMP93]—reflects the increasing complexity of verification. At the first level, we
find safety and co-safety properties, the latter being those whose falsehood (rather than truth)

4
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can always be refuted after a finite number of observations. More sophisticated verification
techniques are required at the second level, which consists of countable boolean combinations
of first-level properties, including response and persistence properties.

The notion of monitorability bridges the gap between the semantics of a specification and its
recognizability during system execution. The development of a formal theory of monitorability
has been fundamentally shaped by the safety-liveness dichotomy and the safety-progress
hierarchy, just as these concepts have influenced the verification [EN98, KV01] and test-
ing [ADX01, RMT*04] of system properties.

The first formal definition of monitorability, introduced by Kim et al. [KKL*02], focused
on the detection of property violations. This definition captures a strict subset of safety
properties over infinite words, as it requires that the set of finite prefixes satisfying the property
be co-recursively enumerable. In contrast, the broader notion of safety is not inherently
constrained by computational feasibility.

The definition by Kim et al. was later generalized by Pnueli and Zaks [PZ06] considering both
satisfactions and violations. According to their definition, a property is s-monitorable for a
finite trace s if there exists a finite continuation r such that either every infinite continuation
to sr satisfies the property or every infinite continuation violates it.

Building on the definition by Pnueli and Zaks, Bauer et al.[BLS11] defined a property as
monitorable if it is s-monitorable for every finite trace s. Accordingly, a monitor outputs
one of the following verdicts on every finite trace s: “true” if every infinite continuation
to s satisfies the property, “false” if every infinite continuation to s violates the property,
and “inconclusive” otherwise. This formulation is now regarded as the classical definition of
monitorability. The authors demonstrated that the set of monitorable properties under this
definition strictly contains the union of safety and co-safety properties. This result was further
strengthened by Falcone et al.[FFM12], who showed that it also strictly contains finite boolean
combinations of safety and co-safety properties. Additionally, Diekert and Leucker [DL14]
provided a topological characterization of monitorable properties (in the Cantor topology of
infinite words), identifying them as sets whose boundary is nowhere dense.

Extending the ideas introduced by Bauer et al.[BLS07], Falcone et al.[FFM12] proposed a
generalized definition of monitorability based on parameterized truth domains rather than
restricting monitor verdicts to a fixed three- or four-valued domains. This generalization
enables a more refined classification of monitorable properties depending on the chosen truth
domain. The authors show how their framework relates with the safety-progress hierarchy
considering several truth domains. Notably, according to their definition, every (linear-time)
property is monitorable in a four-valued domain where the usual “inconclusive” verdict is refined
into “currently true” and “currently false” verdicts, provided that the specification formalism
admits a finite-sequence semantics and that membership of finite execution sequences with
respect to the property is decidable.

A recent line of work by Havelund and Peled [HP18, PH18, HP22, HP23] introduced a
framework for monitorability that classifies properties based on whether they can always, never,
or sometimes be satisfied or refuted by observing finite execution prefixes. For example, in this
framework, safety properties are precisely those that are always finitely refutable and liveness
properties never finitely refutable. Gorostiaga and Sanchez [GS22, GS24]| later extended this
approach to properties over richer value domains, including quantitative properties. The key
difference is to characterize monitorability in terms of the “dismissibility” of potential values
from a given set as longer prefixes of an execution are observed. When instantiated in the
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boolean setting, for instance, safety properties are exactly those where all values strictly greater
than an infinite word's actual value are all finitely dismissible and liveness properties none
finitely dismissible. Expanding on this idea, the authors explored an even finer classification by
considering finite dismissibility or non-dismissibility for some or all executions and for some or
all values in a given set.

In addition to these definitions, Aceto et al. [AAF*19a] developed a theoretical framework of
monitorability covering both linear- and branching-time settings, while Francalanza [Fra21]
introduced a process-algebraic theory of monitoring.

Opportunity. Despite the various efforts to develop a theory of monitorability, almost all
of these approaches focus exclusively on boolean properties, and none of them considers
approximate monitoring and the inherent tradeoffs between resource use and precision as core
principles.

1.2.3 Quantitative Properties and Monitoring

System properties can be quantitative in several ways. First, they may specify absolute
measures such as the average response time of a server or the maximal memory consumption
of a process. In this context, quantitative properties (a.k.a. quantitative languages) generalize
classical boolean specifications by mapping execution traces—finite or infinite—to a richer
domain (e.g., reals) instead of true or false. A formalism for quantitative properties is
provided by quantitative automata Quantitative automata [CDH10b], a formalism for studying
finite-state quantitative properties, extend finite-state automata with numerical weights on
transitions and a “value function” to aggregate an infinite sequence of weights into a single real
value. Common value functions include limit superior, which generalizes the Biichi acceptance
condition; limit average (a.k.a. mean payoff), which computes the long-term average of weight
sequences; and discounted sum, which computes the weighted sum of weight sequences where
the future values contribute less due to discounting. The expressiveness, closure properties,
decision problems of quantitative automata as well as their connections to game theory were
initially explored in [CDH10a, CDH10b]. Later work developed and investigated extensions
of quantitative automata with nesting [CHO17], non-testable counters [CHO16] and a logic
thereof [Paul7], probabilistic semantics [CHO19], and alternation [CDHO09]. Extensions of
linear temporal logic and computation tree logic with accumulation assertions were studied in
[BCHK14].

The classes of limit-average and discounted-sum automata have received particular at-
tention. The universality problem is undecidable for nondeterministic limit-average au-
tomata [DDG'10, HPPR18] and has been long open for discounted-sum, with connections to
open problems from other research fields [BHO15], in particular the reachability in piecewise-
affine maps [AMP95, KPS08], membership in generalized Cantor sets [Din01, ORS16], and
representations of real numbers in nonintegral bases [Rén57]. As the analysis of these models
proved challenging, an exploration of variants with desirable properties was set. Mean-payoff
automaton expressions [CDET10], for example, are compositions of deterministic limit-average
automata with sum, minimum, and maximum, and thus preserve their desirable properties such
as robustness with respect to closure properties and decidability of universality and inclusion.
Similarly, discounted-sum automata with the discount factors restricted to integers [BH14]
are determinizable and their decision problems are decidable, which motivated further studies
focusing on variants supporting multiple [BH21, BH23] or real-valued [Bok24] discount factors.
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1.2. Related Work and Thesis Goals

The idea of automata specifying functions from words to values goes back to the seminal work
of Schiitzenberger [Sch61]: Weighted automata over finite words are finite-state models with
weighted edges, where the weights are aggregated within the algebraic structure of a semiring.
While this model is well understood and extensively studied [DKV09, DK21, ABK22], it still
constitutes a vibrant research field. For example, a recent breakthrough showed that, for
weighted automata over fields, checking whether a deterministic (resp. unambiguous) equivalent
exists is decidable [BS23]. Following the introduction of quantitative automata [CDH10b],
weighted automata and logics on infinite words (moving from semirings to w-valuation monoids)
has been developed in [DM12].

Cost register automata [ADD"13] are an alternative model for defining quantitative properties
on finite words, which originated in the study of streaming transducers [AC10, AC11]. A
cost register automaton is a finite-state automaton equipped with non-testable registers that
are updated by arithmetic operations on input symbols within a cost domain. This model
is expressively equivalent to weighted automata [ADD*13, AFM*20] and has corresponding
characterizations as transformations definable in monadic second-order logic [AC10, AFT12,
AD17, ADD"13]. Other models related to cost register automata include quantitative regular
expressions [AFR16, MRAT17], an extension of regular expressions with streaming compo-
sition and numeric aggregation for specification of quantitative stream queries, and data
transducers [AMS19], an automaton-based formalism with (a finite number of ) data registers
that is expressively equivalent to weighted automata but can be exponentially more succinct.
A quantitative stream processing theory based on cost register automata was developed
in [AFM*20], which focuses on runtime decidability issues for properties over data streams.

A complementary relative view of quantitative properties measures the distance of a given
execution to a boolean property rather than aggregating numeric values along the execution.
While the formalisms discussed above support absolute, aggregation-style evaluations, they
also mostly accommodate this relative approach that has been a focus not only in model
checking but also in runtime monitoring.

One research direction taking this relative view focused on distance-based comparisons of
systems through games. The simulation distances framework [CHR12] generalizes the classical
simulation preorder to a quantitative metric to compute a distance (capturing correctness,
coverage, and robustness) between systems. A main motivation there is to synthesize optimal
systems by minimizing such distances, which was also considered in other works both in
program synthesis [BCHJ09] and repair [DSS16]. An alternative to this framework [FL14]
lifts van Glabbeek’s (qualitative) linear-time branching-time spectrum [vG93, vG01] into a
continuum of system distances in a distance-agnostic manner.

Another line of work focuses on temporal logics with ways to measure the quality of satisfaction.
For example, an extension of linear temporal logic with a quantitative semantics is studied
in [FLSO08], discounting in [ABK14], and averaging in [BMM14]. A relevant collection of
literature on quantitative monitoring from the relative perspective features primarily the metric
temporal logic [AH93] and the signal temporal logic [MNO4]. For example, a quantitative
semantics for metric temporal logic was introduced in [FP06, FP09] and, based on this
semantics, an algebraic framework for monitoring continuous-time signals against metric
temporal logic specifications in [MCW21a, MCW?21b]. In [DFM13], the authors study the
notion of robustness for signal temporal and provide an algorithm for its efficient computation.
The key ingredient of their monitoring method is an online algorithm that computes the
extremal values on a sliding window. Quantitative monitoring of signal temporal logic using
edit distance between behaviors is studied in [JBG™ 18], which also has a flavor of approximate
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monitoring due to the use of quantization of real-valued signals. In the context of monitoring
real-valued signal, some tradeoffs regarding monitor quality also arise naturally due to the
processing of continuous signals. For example, it is shown in [APM19] that sampling rate and
the quality of robustness computation is tightly connected.

Opportunity. Even though the monitoring of properties augmented with various forms of
quantities has been studied, a classification of quantitative properties and automata from a
monitoring perspective is still needed.

1.2.4 Thesis Goals

In light of the opportunities we identified above, this thesis aims to achieve the following goals:

1. Develop a formal theory of quantitative monitorability enabling systematic reasoning
about precision-resource tradeoffs of quantitative monitors.

2. Establish a monitoring-oriented classification of quantitative properties through quanti-
tative extensions of safety and liveness.

3. Implement and evaluate these theoretical contributions in a general-purpose software
tool supporting automated analysis and monitoring of quantitative automata.

1.3 Thesis Outline and Contributions

In Chapter 2, we formally define the necessary mathematical preliminaries. The rest of this
thesis consist of three main parts. First, in Chapters 3 and 4, we develop the foundational
framework for quantitative and approximate monitoring, resource use of quantitative monitors,
and their resource-precision trade-offs. Next, in Chapter 5, we define and explore the notions of
safety and liveness for quantitative properties and automata from the monitoring perspective.
Finally, building on the theoretical contributions from previous chapters, in Chapter 6 we
present the first general-purpose software tool for the analysis and monitoring of quantitative
automata.

We summarize the specific contributions of each chapter below.

In Chapter 3, we introduce a theoretical framework for the “limit monitoring” of quantitative
properties. In this limit monitoring setting, a monitor incrementally observes the finite prefixes
of an infinite word w while producing a verdict sequence whose upper or lower limits give
“estimate” for the value of w. We focus on the theoretical guarantees on the (relative) quality
of these estimates in relation to the amount of resources the monitor has. Key contributions
are as follows.

= We formally define several modalities of quantitative and approximate limit monitorability
and show that they conservatively generalize various definitions of boolean monitorability.

» Based on these definitions, we establish a framework to evaluate monitors through
precision-resource trade-offs, emphasizing the relation between approximation quality
and computational resources.

» We demonstrate that additional monitor resources such as registers or states lead to
strictly better approximations for certain quantitative properties.



1.3. Thesis Outline and Contributions

In Chapter 4, we extend and make finer the quantitative monitoring framework from Chapter 3
in two directions. First, we propose an abstract interpretation of monitors where, for each
natural number n, the aggregate semantics of a monitor at time n is an equivalence relation over
all sequences of at most n observations so that two equivalent sequences are indistinguishable
to the monitor and thus mapped to the same verdict value. Second, we consider in addition
the “prompt monitoring” setting where a monitor is required to conform to an absolute quality
measure not only on infinite words but also on their finite prefixes. Key contributions are as
follows.

= We introduce an abstract interpretation of quantitative monitors for measuring monitor
precision and resource use through equivalence class abstractions.

» We show that resource-optimal approximate monitors are not unique and cannot be
greedily constructed from their precise counterparts.

» We demonstrate how our framework can be used for formally analyzing the resource-
precision tradeoffs of quantitative monitors. For example, we show a class of properties
with an infinite hierarchy of approximate monitors and identify another where it is not
possible to save resources without increasing the monitor’s limit error.

In the first part of Chapter 5, we extend the classical concepts of safety and liveness to the
quantitative setting. These definitions build our monitoring-oriented view of quantitative
properties: a property is safe when every wrong lower bound hypothesis can be falsified by
observing a finite prefix of an infinite computation trace, and live when some wrong hypothesis
cannot be finitely falsified. Key contributions are as follows.

= We formally define safety and liveness (as well as co-safety and co-liveness) of quantitative
properties and prove that every quantitative property is the pointwise minimum of a
safety property and a liveness property (similarly, the pointwise maximum of a co-safety
property and a co-liveness property).

» We identify the relation between quantitative safety and topological continuity together
with characterizations linking quantitative safety and liveness to their boolean analogs.

» We introduce approximate safety and co-safety and prove that for every quantitative
property that is approximately safe and approximately co-safe there is an arbitrarily
precise finite-state monitor.

In the second part of Chapter 5, we instantiate our quantitative safety and liveness framework
with the specific classes of quantitative properties expressed by automata. Similarly to how
boolean automata define classes of boolean properties amenable to boolean verification,
quantitative automata define classes of quantitative properties amenable to quantitative
verification. Quantitative automata generalize standard boolean automata with rational-valued
transitions and a value function that accumulates an infinite sequence of weights into a single
value, defining functions from infinite words into the totally-ordered domain of real numbers.
Key contributions are as follows.

= We identify that checking whether a quantitative automaton defines a constant function
is closely related with checking its safety and liveness and we provide algorithms solving
this problem for the common classes of quantitative automata.



1.

INTRODUCTION

» We describe algorithms for constructing the safety closure of quantitative automata,
checking their safety and liveness, and decomposing them into their safety and liveness
components.

= We provide a comprehensive complexity analysis of these problems and the algorithms
we present.

In Chapter 6, we present Quantitative Automata Kit (QuAK), the first comprehensive tool de-
signed for automating the analysis and monitoring of quantitative automata. Key contributions
are as follows.

= We implement the standard quantitative automata algorithms from the literature (e.g.,
for checking nonemptiness, universality, and inclusion) as well as the novel algorithms
presented in Chapter 5 together with simple monitoring capabilities.

= We demonstrate QuAK's effectiveness through empirical evaluation.

Finally, in Chapter 7, we conclude the thesis with a discussion on future research directions
and potential impact.
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CHAPTER

Definitions

2.1 Basic sets

We respectively denote by N, Z, Q, and R the set of nonnegative integers (i.e., naturals),
integers, rationals, and reals. In addition, we define the extended sets N = N U {+oo},
Z =7U{—00,+00}, and R = RU{—00,4+00}. When it is clear from the context, we simply
write oo instead of +o0.

2.2 Order-theoretic structures

A complete lattice is a partially-ordered set where all subsets have a supremum (a.k.a. least
upper bound or join) and an infimum (a.k.a. greatest lower bound or meet). Given a complete
lattice D, we write | for inf D and T for sup ID. Unless otherwise stated, we assume throughout
the thesis that complete lattices are nontrivial, i.e., 1 # T. Whenever appropriate, we write 0
or —oo instead of 1, and 1 or oo instead of T. We respectively use the terms minimum and
maximum (resp. infimum and supremum) for the greatest lower bound and the least upper
bound of finitely (resp. infinitely) many elements. The inverse (a.k.a. opposite or dual) of
D is the complete lattice D);,, that contains the same elements as D but with the ordering
reversed.

2.3 Alphabets and words

Let ¥ = {a,b,...} be a finite alphabet of letters (observations). A word (a.k.a. trace) over
> is a sequence of letters from Y. We denote by >* the set of finite words and by > the set
of infinite words. For n € N, we denote by X" the set of finite words of length n and by ="
those of length at most n. Given u € ¥* and w € ¥* U 3¢, we write u < w (resp. u < w)
when w is a strict (resp. nonstrict) prefix of w. We denote by |w| the length of w € ¥* U X¥
and, given a € X, by |w|, the number of occurrences of a in w. For w € ¥* U X* and
0 <i < |w|, we denote by w[i] the ith letter of w.

11
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2.4 Boolean and quantitative properties

A boolean property P C > is a set of infinite words. A value domain D is a partially-ordered set,
which we assume to be a complete lattice unless otherwise stated. A quantitative property is a
total function @ : ¥ — ID from the set of infinite words to a value domain. We use the boolean
domain B = {0, 1} with 0 < 1 and, in place of P, its characteristic property ¢p : ¥ — B,
which is defined by ¢p(w) = 1 if w € P, and ®p(w) = 0 if w ¢ P. When we say just
property, we mean a quantitative one. Let n > 1 be an integer and &4, ...,®, be properties
on D. Given a function f : D" — D, we define f(®1,...,2,)(w) = f(P1(w),...,P,(w)) all
infinite words w € ¥¥.

Recall that the inverse of a value domain D is denoted by D);,, and it contains the same
elements as D but with the ordering reversed. For a property @ : > — D, its complement
& maps every infinite word to the same value in the inverse of D, ie,, & : X — D,
is defined as @(w) = &(w) for all w € X¥. Given a property & : ¥ — D and a value
v € D, we define &, = {w € 3¢ | d(w) ~ v} for ~ € {<, >, L, #,<,>,=} The top
value of a property @ is sup,cs. ®(w), which we denote by T4, and its bottom value is
1g = inf,exw @(w). For all properties @1, P, on a value domain D and all words w € ¥, we
let min(®y, P2)(w) = min(Py(w), Po(w)) and max(Py, P2)(w) = max(Py(w), P2(w)).

Some properties can be defined as limits of value sequences. A finitary property w: ¥* — D
associates a value with each finite word. A value function Val: DY — D accumulates an
infinite sequence of values to a single value. Given a finitary property 7, a value function
Val, and a word w € 3¢, we write Val, -, m(u) instead of Val(m(ug)m(uy)...), where each u;
satisfies u; < w and |u;| = i.

A property @ : 3 — DD is a limit property when there exists a finitary property 7 : ¥* — D
and a value function Val : D* — D such that ¢(w) = Val, <, 7(u) for all w € 3. We denote
this by & = (7, Val). In particular, if & = (m, Val) for Val € {Inf, Sup, LimInf, LimSup}, then
@ is a Val-property.

2.5 Quantitative Automata

A nondeterministic quantitative automaton [CDH10b] (or just automaton from here on) on
words is a tuple A = (X, Q,¢,d), where 3 is an alphabet; @ is a finite nonempty set of states;
¢ € @ is an initial state; and §: Q x 3 — 2(@%@) is a finite transition function over weight-state
pairs. A transition is a tuple (¢,0,z,¢') € Q x ¥ x Q x @, such that (z,¢') € §(q,0), also
written ¢ == ¢'. (There might be finitely many transitions with different weights over the
same letter between the same states.!) We write (#) = x for the weight of a transition
t=(q,0,2,q). Ais deterministic if for all ¢ € Q and o € %, the set §(q,0) is a singleton.
We require the automaton A to be total (a.k.a. complete), namely that for every state ¢ € Q
and letter 0 € ¥, there is at least one state ¢’ and a transition ¢ =% ¢'. For a state q € Q,
we denote by A? the automaton that is derived from A by setting its initial state ¢ to ¢.

. 0]: 1]: .y
A run of A on a word w is a sequence p = qq ! ]xo, 1 ul ]xl, @o . .. of transitions where

go =t and (x4, ¢i+1) € d(q;, w[i]). For 0 < i < |w]|, we denote the ith transition in p by p|i],
and the finite prefix of p up to and including the ith transition by p[..i]. As each transition ¢;
carries a weight v(¢;) € Q, the sequence p provides a weight sequence y(p) = (o) (t1) - ..

1The flexibility of allowing “parallel” transitions with different weights is often omitted, as it is redundant
for some value functions, including the ones we focus on in the sequel, while important for others.
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A Val-automaton is one equipped with a value function Val : Q“ — R, which assigns real
values to runs of A. We assume that Val is bounded for every finite set of rationals, i.e., for
every finite V' C Q there exist m, M € R such that m < Val(z) < M for every x € V. The
finite set V' corresponds to transition weights of a quantitative automaton, and the concrete
value functions we consider satisfy this assumption (see below).

Notice that while quantitative properties can be defined over arbitrary value domains, we
restrict quantitative automata to totally-ordered numerical value domains (i.e., bounded
subsets of R) as this is the standard setting in the literature.

The value of a run p is Val(y(p)). The value of a Val-automaton A on a word w, denoted
A(w), is the supremum of Val(p) over all runs p of A on w, generalizing the standard approach
in boolean automata where acceptance is defined through the existence of an accepting run.
The top value of a Val-automaton A is T4 = sup,cs. A(w), and its bottom value is
1 4 = infyexe A(w), which we denote by T and L when A is clear from the context. Note
that when we speak of the top value of an automaton or a property expressed by an automaton,
we always match its value domain to have the same top value. The size of an automaton
consists of the maximum among the size of its alphabet, state space, and transition space,
where weights are represented in binary.

We list below the value functions for quantitative automata that we will use, defined over
infinite sequences x = zox; ... of rational weights.

= Inf(z) = inf{z, | n > 0} = Sup(x) =sup{z, |n >0}

= Liminf(z) = lim inf{z; | i >n} = LimSup(z) = dim sup{z; | i > n}
1 n—1 1 n—1

= LimInfAvg(z) = LimInf ( > xz> = LimSupAvg(z) = LimSup ( > x2>
" izo " izo

= For a discount factor A € QN (0,1), DSumy(z) = > Nz,

i>0
Note that (i) when the discount factor A € Q N (0, 1) is unspecified, we write DSum, and (ii)
LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff in the literature.
The basic decision problems for boolean automata extend to this model naturally. Consider
two quantitative automata A and B together with a rational threshold v € Q.

= A is nonempty with respect to v iff A(w) > v for some w € ¥¥.

» A is universal with respect to v iff A(w) > v for all w € ¥¥.

= Ais included in B iff A(w) < B(w) for all w € ¥¥.

= A and B are equivalent iff A(w) = B(w) for all w € £.
In this thesis, we use the term quantitative automata rather than weighted automata, following
the distinction made in [Bok21]: Quantitative automata retain the classical “preference”
interpretation of nondeterministic branching: existential choices are evaluated by the supremum

and universal choices by the infimum, which forces both the weight domain and its associated
value functions to form a complete lattice (e.g., a bounded subset of R). By contrast,
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weighted automata abstract away this branching semantics in favor of an arbitrary commutative
aggregation operator supplied by a semiring or valuation monoid, generally without any dual
(universality) interpretation. Consequently, weighted automata allow weights and value
functions from arbitrary domains.
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CHAPTER

Quantitative and Approximate Limit
Monitoring

In this chapter, the following publications were re-used in full:

= Thomas A. Henzinger, N. Ege Sarac. Quantitative and Approximate Monitoring. In
36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021.

3.1 Introduction

We provide a theoretical framework for the convergence of two recent trends in computer-
aided verification. The first trend is runtime verification [BFFR18]. Classical verification
aspires to provide a judgment about all possible runs of a system; runtime verification, or
monitoring, provides a judgment about a single, given run. There is a trend towards monitoring
because the classical “verification gap” keeps widening: while verification capabilities are
increasing, system complexity is increasing more quickly, especially in the time of many-core
processors, cloud computing, cyber-physical systems, and neural networks. Theoretically
speaking, the paradigmatic classical verification problem is emptiness of the product between
system and negated specification (“does some run of the given system violate the given
specification?"), whereas the central runtime verification problem is membership (“does a
given run satisfy a given specification?”). Since membership is easier to solve than emptiness,
this has ramifications for specification formalisms; in particular, there is no need to restrict
ourselves to w-regular specifications or finite-state monitors. We do restrict ourselves to the
online setting, where a monitor watches the finite prefixes of an infinite run and, with each
prefix, renders a verdict, which could signal a satisfaction or violation of the specification, or
“don’t know yet."

The second trend is quantitative verification [Kwi07, Hen13]. While classical verification is
boolean, in that every complete run either satisfies or violates the specification and, accordingly,
the system is either correct (i.e., without a violating run) or incorrect, quantitative verification
provides additional, often numerical information about runs and systems. For example, a
quantitative specification may measure the probability of an event, the “response time” or
the use of some other resource along a run, or by how much a run deviates from a correct
run. In quantitative runtime verification, we wish to observe, for instance, the maximal or
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average response time along a given run, not across all possible runs. Quantitative verification
is interesting for an important reason beyond its ability to provide non-boolean information:
it may provide approximate results [BH14]. A monitor that under- or over-approximates a
quantitative property may be able to do so with fewer computational resources than a monitor
that computes a quantitative property’s exact value. We provide a theoretical framework
for quantitative and approximate monitoring, which allows us to formulate and prove such
statements.

In boolean runtime verification frameworks, there are several different notions of monitorability
[KKL*T02, FFM12, AAF+19b]. Along with safety and co-safety, a well-studied definition is by
[PZ06] and [BLS11]: after watching any finite prefix of a run, if a positive or negative verdict
has not been reached already, there exists at least one continuation of the run which will allow
such a verdict. This existential definition is popular because a universal definition, that on
every run a positive or negative verdict will be reached eventually, is very restrictive; only
boolean properties that are both safe and co-safe can be monitored universally [AAF*19b]. By
contrast, the existential definition covers finite boolean combinations of safety and co-safety,
and more [FFM12]. In quantitative approximate monitoring, however, there is less need to
prefer an existential definition of monitoring because usually many approximations are available,
even if some are poor. The main attention must shift, rather, to the quality—i.e., precision—of
the approximation. Our quantitative framework fully generalizes the standard boolean versions
of monitorability in a universal setting where monitors yield approximate results on all runs
and can be compared regarding their precision and resource use. In fact, we advocate the
consideration of precision-resource tradeoffs as a central design criterion for monitors, which
requires a formalization of monitoring in which precision-resource tradeoffs can be analyzed.
Such a formalization is the main contribution of this chapter.

As an example, let us illustrate a precision-resource tradeoff that occurs when using register
machines as monitors. Consider a server that processes requests. Each trace of the server is an
infinite word over the alphabet {rq, ack, 00} of events. An interesting quantitative property
of the server is maximal response time, which measures the maximal number of events before
each rq event in a trace is followed by an ack event. This property, denoted &, is a function
that maps every infinite word to a value in NU {oo}. To construct a precise online monitor
for @1, we need two counter registers x and y and the ability to compare their values: as long
as x < y, register x counts the current response time, and y stores the maximal response
time encountered so far; if z = y, counting continues in y, and x is reset to 0. The output, or
verdict value, of the monitor is always y. In this way the 2-counter monitor M,,.. generates
the verdict function depicted in Figure 3.1.

Mmax
2

w
rqg ack rq oo ack rq ack oo

Figure 3.1: Monitoring maximal response time for a trace w.
Considering the same server, one may also be interested in the average response time of

a trace. The precise monitoring of average response time requires 3 counters and division
between counter registers to generate outputs. Moreover, verdict values can fluctuate along
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a trace, producing a non-monotonic verdict function. Figure 3.2 shows the verdict function
generated by a 3-register monitor M, with division.

Mg

2
1.5
1 / —
0.5 /
w

rqg ack rqg oo ack rqg ack oo

Figure 3.2: Monitoring average response time for a trace w.

Now, let us consider an alphabet {rq;,ack;, rqy,acks, 0o} with two types of matching
(ra;,ack;) pairs. The quantitative property @, measures the maximal response times for both
pairs: it maps every trace to an ordered pair of values from N U {oco}. A construction similar
to the one for @, gives us a precise monitor that uses 4 counters. Indeed, we will show that 3
counters do not suffice to monitor @, precisely. However, the quantitative property @5 can be
approximately monitored with 3 counters: two counters can be used to store the maxima so
far, and the third counter may track the current response time prioritizing the pair (rq;, ack;)
whenever both request types are active. This 3-counter monitor will always under-approximate
the maximal response time for the (rq,, acks) pair. In case the resources are even scarcer,
a 2-counter monitor can keep the same value as an under-approximation for both maximal
response times in one counter, and use the second counter to wait sequentially for witnessing
(rg, ack) pairs of both types before incrementing the first counter. Just like the number of
registers leads to precision-resource tradeoffs for register monitors, the number of states leads
to precision-resource tradeoffs for finite-state monitors. For instance, a fixed number of states
can encode counter values up to a certain magnitude, but can under-approximate larger values.
We provide a general formal framework for quantitative and approximate monitoring which
allows us to study such tradeoffs for different models of monitors.

In Section 3.2, we define quantitative properties, approximate verdict functions, and how the
precision of monitors can be compared. In Section 3.3, we give a variety of different examples
and closure operations for quantitative monitoring. We also characterize the power of the
important class of monotonic monitors by showing that, in our framework, the quantitative
properties that can be monitored universally (on all traces) and precisely by monotonically
increasing verdict functions are exactly properties that are “continuous from below” on the
value domain. In Section 3.4, we embed several variations of the boolean value domain
within our quantitative framework. This allows us to characterize, within the safety-progress
hierarchy [CMP93], which boolean properties can be monitored universally and existentially; see
Tables 3.1 and 3.2. The section also connects our quantitative definitions of monitorability to
the boolean definitions of [FFM12, AAF*19b, PZ06, BLS11] and shows that our quantitative
framework generalizes their popular boolean settings conservatively. Finally, in Section 3.5,
we present precision-resource tradeoffs for register monitors. For this purpose, we generalize
the quantitative setting of [FHS18, FHK20] to approximate monitoring within our framework.
In particular, we show a family of quantitative properties for which every additional counter
register improves the monitoring precision.

Related work. In the boolean setting, the first definition of monitorability [KKL"02] focused
on detecting violations of a property. This definition was generalized by [PZ06] and [BLS11] to
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capture satisfactions as well. Later, instead of using a fixed, three-valued domain for monitoring,
Falcone et al. [FFM12] proposed a definition with parameterized truth domains. According
to their definition, every linear-time property is monitorable in a four-valued domain where
the usual “inconclusive” verdict is split into “currently true” and “currently false” verdicts.
Frameworks that capture existential as well as universal modalities for monitorability were
studied in a branching-time setting [FAAT17, AAF*19a].

The prevalence of LTL and w-regular specifications in formal verification is also reflected in
runtime verification [BLS11, BLS06, BLS07]. Recently, several more expressive models have
been proposed, such as register monitors [FHS18], monitors for visibly pushdown languages
[DLT13a], quantified event automata [BFH*12], and many others for monitoring data events
over an infinite alphabet of observations, as surveyed in [HRTZ18]. One step towards quanti-
tative properties is the augmenting of boolean specifications with quantities, e.g., discounting
and averaging modalities [dIAHMO03, BMM14], timed specifications [BNF13, PJT*17], or
specifications that include continuous signals, particularly in the context of cyber-physical
systems [BFMU17, JBG"18]. Another prominent line of work that provides a framework
for runtime verification beyond finite-state is that of Alur et al. [AMS17, AMS19, AFM*20].
Their work focuses on runtime decidability issues for boolean specifications over streams of
data events, but they do not consider approximate monitoring at varying degrees of precision.
Quantitative frameworks for comparing traces and implementations for the same boolean
specification were studied in [CB02, BCHJ09]. Our approach is fundamentally different as we
consider quantitative property values.

Although quantitative aspects of systems have been studied much in the context of probabilistic
model checking [Kwi07], decision problems in verification for quantitative properties (a.k.a.
quantitative languages) [CDH10b], and games with quantitative objectives [BCJ18, BMR™ 18],
in runtime verification, we observe a gap. While some formalisms for monitoring certain
quantitative properties have been proposed [FHK20, CHO16, Paul7], to the best of our
knowledge, our work is the first general semantic framework that explores what it means
to monitor and approximate generic quantitative properties of traces. We believe that such
a framework is needed for the systematic study of precision-resource tradeoffs in runtime
verification. See [CGKM12] for a discussion of why quantitative verification at runtime is
needed for self-adapting systems, and [FP18, HLS20] for monitoring neural networks.

3.2 Definitional Framework

3.2.1 Quantitative Properties and Verdict Functions

Recall that a value domain D is a complete lattice, unless stated otherwise, and a quantitative
property @ : ¥ — D is a total function from infinite traces to values. A verdict v : ¥* — D is
a function on finite traces such that for all infinite traces w € ¢, the set {v(u) : u € pref(w)}
of verdict values over all prefixes of w has a supremum (least upper bound) and an infimum
(greatest lower bound). If D is a complete lattice, then these limits always exist. For an infinite
trace w € ¥, we write v(w) = (v(u;))ien for the infinite verdict sequence over the prefixes
u; < w of increasing length 7. We use the limsup or lim inf of a verdict sequence v(w) to
represent the “estimate” that the verdict function v provides for a quantitative property value
&(w) on the infinite trace w.

Definition 3.2.1. Let @ be a quantitative property and w € ¥ an infinite trace. A verdict
function v approximates @ on w from below (resp. above) iff limsup v(w) < ®(w) (resp.
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&(w) < liminf v(w)). Moreover, v monitors @ on w from below (resp. above) iff the equality
holds.

3.2.2 Universal, Existential, and Approximate Monitorability
We define three modalities of quantitative monitorability.

Definition 3.2.2. A quantitative property ¢ is universally monitorable from below (resp.
above) iff there exists a verdict function v such that for every w € ¥* we have that v monitors
@ on w from below (resp. above).

Definition 3.2.3. A quantitative property ¢ is existentially monitorable from below (resp.
above) iff there exists a verdict function v such that (i) for every w € ¥“ we have that v
approximates @ on w from below (resp. above), and (ii) for every u € ¥* there exists w € %%
such that v monitors & on uw from below (resp. above).

Definition 3.2.4. A quantitative property & is approximately monitorable from below (resp.
above) iff there exists a verdict function v such that for every w € ¥“ we have that v
approximates ¢ on w from below (resp. above).

Observe that every property is trivially approximately monitorable from below or above. We
demonstrate the definitions in the example below.

Example 3.2.5. Let ¥ = {rq,,acky, rq,,acks,00} and D = N. Consider the maximal
response-time properties &1 and ®y over (rq,,ack,) and (rq,,acksy) pairs, respectively. For
every w € 3%, let ®(w) = max(P(w),P2(w)). Consider the verdict v, that counts both
response times and outputs the maximum of the two, the verdict v, that counts and computes
the maximum only for the (rq,,acky) pair, and the constant verdict v3 that always outputs
0. Evidently, vy universally monitors @ from below, and vs approximately monitors @ from
below. Moreover, vy existentially monitors @ from below because the true maximum can
only be greater, and we can extend every finite trace u € X* with w = rq, - 00* such that
lim sup v5(uw) = P(uw) = oco.

3.2.3 Monotonic Verdict Functions

Of particular interest are monotonic verdict functions, because the “estimates” they provide
for a quantitative property value are always conservative (below or above) and can improve
in quality over time. On the other hand, some properties, such as average response time,
inherently require non-monotonic verdict functions for universal monitoring.

Definition 3.2.6. A verdict function v is monotonically increasing (resp. decreasing) iff
for every u,t € ¥* we have u < t implies v(u) < v(t) (resp. v(u) > v(t)). Moreover, v
is monotonic iff it is either monotonically increasing or monotonically decreasing. If v is
monotonic or non-monotonic, then it is unrestricted.

If the value domain D has a least and a greatest element, every monotonic verdict v that
universally monitors a property @ from below also universally monitors @ from above. Therefore,
in such cases, we say that v wuniversally monitors @. In Example 3.2.5 above, the verdict v, is
monotonically increasing and thus universally monitors @. Let v, be such that v4(u) = oo if u
contains a request that is not acknowledged, and v4(u) = v (u) otherwise. The verdict vy is
not monotonic, but it universally monitors ¢ from above.

19



3.

QUANTITATIVE AND APPROXIMATE LIMIT MONITORING

3.2.4 Comparison of Verdict Functions
Quantitative monitoring provides a natural notion of precision for verdict functions.

Definition 3.2.7. Let ¢ be a quantitative property that is (universally, existentially, or
approximately) monitorable from below (resp. above) by the verdict functions v, and v5. The
verdict vy is more precise than the verdict vy iff for every w € ¥ we have lim sup v, (w) <
limsup v (w) (resp. liminf vy (w) < liminfwy(w)) and there exists w' € ¥ such that
lim sup v5(w') < limsup vy (w’) (resp. liminf 1y (w’) < liminfy(w’)). Moreover, v, and
vy are equally precise iff for every w € 3 we have limsup vo(w) = limsup v (w) (resp.
liminf 4 (w) = lim inf vy (w)).

Note that for a quantitative property @, if the verdict functions v and v5 universally monitor
@ both from below or from above, then v; and v, are equally precise. Two monotonically
increasing or monotonically decreasing verdict functions can be compared not only according
to their precision but also according to their speed, that is, how quickly they approach the
property value. This will be important if monitors have limited resources and their outputs are
delayed, i.e., they affect not the current but a future verdict value.

3.3 Monitorable Quantitative Properties

3.3.1 Examples
We provide several examples of quantitative properties and investigate their monitorability.

Example 3.3.1 (Maximal response time). Let ¥ = {rq,ack,o0} and D = NU {co}. Let
mrt : X* — D be such that mrt(u) = oo if, in u, a rq is followed by another rq without
an ack in between, it equals the maximal number m,, of observations between matching
(rq,ack) pairs if there is no pending request in u, and otherwise it equals max(m,,n) where
n is the current response time. For every w € ¥¥, let us denote by mrt(w) the infinite
sequence (mrt(u;));en over the prefixes u; < w of increasing length i. Consider the property
&(w) = limmrt(w) that specifies the maximal response time of a server that can process at
most one request at a time. To monitor @, we use mrt as the verdict, i.e., we let v(u) = mrt(u)
for every u € ¥*. Observe that mrt is monotonically increasing, and the construction yields
limv(w) = &(w) for every w € X¢. Therefore, the verdict v universally monitors .

The maximal response-time property of Example 3.3.1 is evidently infinite-state because it
requires counting up to an arbitrarily large integer. However, there are finite-state approxima-
tions that improve in precision with every additional state. We say that a finite-state machine
generates a verdict function iff, on every finite trace, the machine’s output equals the verdict
value, where an output is a mapping from the set of states to the value domain.

Example 3.3.2 (Approximate monitoring of maximal response time). Consider the maximal
response-time property @ from Example 3.3.1. Let M, be a finite-state machine with k states,
and let v, be the verdict generated by M,. For every k € N, the best the verdict v, can
do is to approximately monitor & from below, because it can only count up to some integer
m < k. Suppose that we are given k + 1 states. We can use the additional state to construct
a machine My, from M, to generate a more precise verdict vy, as follows. We add the
appropriate transitions from the states that have the output value of m to the new state,
which is assigned the output m + 1. With the additional transitions, the machine My, can
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continue counting for one more step after reading a trace in which the current maximum is m.
Therefore, v, is more precise than v.

Next, we define the average response-time property and present two verdict functions that
illustrate another kind of precision-resource tradeoff for monitors.

Example 3.3.3 (Average response time). Let ¥ = {rq,ack,00} and D = RU {c0}. Let
art : ¥* — D be such that art(u) = oo if u contains a rq followed by another rq without an
ack in between, it equals the average number of observations between matching (rq, ack)
pairs if there is no pending rq in u, and otherwise it equals % where n is the number
of acknowledged requests, x,, is the average response time for the first n requests, and m is
the number of observations since the last rq. For every w € 3%, let art(w) = (art(u;))ien
over the prefixes u; < w of increasing length i. Now, define lim avg(w) = lim inf art(w) for
every w € ¥ [CDH10b], and let ¢ be the quantitative property such that ¢(w) = lim avg(w).
In other words, ® specifies the average response time of a server that can process at most
one request at a time. To monitor @, we can use the function art as a verdict, i.e., let v be
such that v(u) = art(u) for all u € ¥*. Intuitively, the moving average approaches to the
property value as v observes longer prefixes. Therefore, by construction, for every w € ¥, we
have lim inf v(w) = @(w), which means that ¢ is universally monitorable from above by an
unrestricted verdict function.

Alternatively, we can use the monotonic verdict function V' that universally monitors the
maximal response-time property in Example 3.3.1. Observe that V' existentially monitors
& from above because (i) the maximal response time of a trace is greater than its average
response time, and (ii) for every finite prefix u there is an extension w that contains a request
that is not acknowledged, which yields lim v/ (uw) = @ (uw) = 0.

Boolean safety and co-safety properties can be embedded in a quantitative setting by considering
their discounted versions [dAHMO03]. We show that discounted safety and co-safety properties
are universally monitorable.

Example 3.3.4 (Discounted safety and co-safety). Let & be a discounted safety property,
that is, @(w) = 1 if w does not violate the given safety property, and $(w) =1 — o if the
shortest violating prefix of w has length n. Similarly, let W be a discounted co-safety property:
¥(w) = 0 if w does not satisfy the given co-safety property, and W(w) = 5 if the shortest
satisfying prefix of w has length n. To monitor these two properties, we use verdict functions
vy and vy that work similarly as @ and W on finite traces, that is, ve(u) = 1 if u is not
violating for the given safety property, and vgp(u) = 1 — % if the shortest violating prefix
of u has length n; and similarly for vy. One can easily verify that @ and W are universally

monitorable by vg and vy, respectively.

Finally, we look at another classical example of quantitative properties, often called energy
properties [CDH10b].

Example 3.3.5 (Energy). Let A= (Q, X, 9, qo,) be a deterministic finite automaton with
weighted transitions, where () is a set of states, Y. is an alphabet, 6 C () X ¥ X () is a set
of transitions, qq is the initial state, and v : 0 — Z is a weight function. Let w =0y ...0,
be a finite trace of length n, and let qq . ..q, be the corresponding run of A. We define
A(u) =301 w(gi-1, 04, qi), where A(e) = 0. Consider the value domain D = 7Z U {oco}. Let
& be a property such that, for every w € X*, we have ®(w) = k where k is the smallest
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nonnegative value that satisfies A(u) + k > 0 for every finite prefix u < w. To monitor @, we
construct the following verdict function: given u € ¥*, let v(u) = —min{A(t) | t € pref(u)}.
Note that v is monotonically increasing. On an infinite trace w € ¥¢, if v(w) approaches
0o, then w yields a negative-weight loop on A, therefore ®(w) = oco. Otherwise, if v(w)
converges to a finite value, then it is equal to ®(w) by construction, which means that v
universally monitors ®.

3.3.2 Closure under Operations on the Value Domain

Let D be a value domain and @ : ¥ — D be a quantitative property. Recall that the
complement of @ is a quantitative property @ : >* — Dj,, where D and D;,, contain the
same elements but their ordering is reversed.

Proposition 3.3.6. A quantitative property ® is universally (resp. existentially; approximately)
monitorable from below iff @ is universally (resp. existentially; approximately) monitorable
from above.

If the value domain I is a lattice, then monitorability from below is preserved by the least
upper bound (written max) and from above by greatest lower bound (written min). For all
quantitative properties @ and ¥ on DD, and all infinite traces w € X, let max (P, ¥)(w) =
max(P(w),¥(w)) and min(P, ¥)(w) = min(P(w), ¥(w)).

Proposition 3.3.7. For all quantitative properties @ and ¥ on a lattice, if & and ¥ are
universally (resp. existentially; approximately) monitorable from below (resp. above), then the
property max(®, V) (resp. min(P,¥)) is also universally (resp. existentially; approximately)
monitorable from below (resp. above).

Proof. Let vg and 1y be two verdict functions that universally monitor @ and ¥ from below.
Then, we have max(®(w), ¥ (w)) = max(limsup vg(w), limsup vy (w)) for every w € £.
Since we assume that the domain contains a greatest element, for every w € ¥, we also have
max (lim sup vg(w), lim sup vy (w)) equals lim sup(max(vg(w), vy (w))). Therefore, we can
use max(Vg, Vy) as a verdict function to universally monitor max(®,¥) from below the same
way vg and vy monitor @ and ¥. The case for min and monitorability from above is symmetric,
and the cases for existential and approximate monitoring can be proved similarly. O]

Proposition 3.3.8. For all quantitative properties ® and ¥ on a lattice, if ® and ¥ are
(universally, existentially, or approximately) monitorable from below (resp. above), the property
min(P, V) (resp. max(P,V)) is approximately monitorable from below (resp. above).

Proof. Let vg and vy be verdict functions that monitor @ and ¥ from below, therefore for every
infinite trace w € 3 we have lim sup vg(w) < @(w) and limsup vy (w) < ¥(w). Because
lim sup(min(vg(w), vy(w))) < min(lim sup vg(w), lim sup vy (w)) for every w € 3¢, we can
use min(vg, vy) as a verdict function to approximately monitor min(®, %) from below. The
case for max is dual. O

If D is a numerical value domain with addition and multiplication, such as the reals or integers,
or their nonnegative subsets, then not all modalities of monitorability are preserved under these
operations. For all quantitative properties @ and ¥ on ID, and all infinite traces w € ¢, let
(@ +V)(w) =P(w)+¥(w) and (P -¥)(w) = &(w) - ¥(w). Since limsup is subadditive and

22



3.3. Monitorable Quantitative Properties

submultiplicative while lim inf superadditive and supermultiplicative, one can easily conclude
the following.

Proposition 3.3.9. For all quantitative properties @ and ¥ on a numerical value domain, if @
and W are (universally, existentially, or approximately) monitorable from below (resp. above),
then & + W and @ - W are approximately monitorable from below (resp. above).

However, monitorability is preserved under any monotonically increasing continuous function
on value domains that are totally ordered.

Proposition 3.3.10. Let D be a totally-ordered value domain. Consider a quantitative
property @ : > — D and a monotonically increasing continuous function f : 1D — D. If ® is
(universally, existentially, or approximately) monitorable from below (resp. above), then so is

f(@).

Proof. Follows from the fact that monotonically increasing continuous functions commute
with the limit operations. O

3.3.3 Continuous Quantitative Properties

For this section, we assume that ID is a complete lattice and define continuous-from-above
and continuous-from-below properties on . Let @ be a quantitative property and, for every
u € X* let T (u) = sup{P@(uw) | w € X¥}. For w € 3¢, the function &+ generates
an infinite sequence @ (w) = (P (u;));en over the prefixes u; < w of increasing length i.
Similarly, let @~ (u) = inf{®(uw) | w € ¥¥} and extend it to generate infinite sequences on
infinite traces.

Definition 3.3.11. A property @ is continuous from above iff for every infinite trace w € ¥¥,
we have &(w) = lim & (w). Moreover, ¢ is continuous from below iff @ is continuous from
above, or equivalently, iff ®(w) = lim &~ (w) for every w € ¥¥.

Intuitively, the continuous-from-above and continuous-from-below properties constitute well-
behaved sets of properties in the sense that, to monitor them, there is no need for speculation.
For example, considering a continuous-from-above property, the least upper bound can only
decrease after reading longer prefixes; therefore, a verdict function monitoring such a property
can simultaneously be conservative and precise. We make this connection more explicit and
show that continuous-from-above and continuous-from-below properties satisfy the desirable
property of being universally monitorable by monotonic verdict functions.

Theorem 3.3.12. A quantitative property @ is continuous from above iff © is universally
monitorable by a monotonically decreasing verdict function.

Proof. For the only if direction, suppose @ is continuous from above, i.e., lim ®*(w) = ®(w)
for every w € ¥*. Since @ : ¥* — D is monotonically decreasing and it converges to the
property value for every infinite trace, we can use it as the verdict function to universally
monitor P.

Now, let v be a monotonically decreasing verdict function such that lim v(w) = &(w) for
all w € ¥¥. We claim that v(u) > @*(u) for all u € ¥*. Suppose towards contradiction
that v(u) < @T(u) for some u € ¥*. Since we have either (i) " (u) = ®(uw) for some
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w € X, or (i) for every w € X¢ there exists w' € 3¢ such that &(uw) < @(uw’), we obtain
v(u) < @(uw”) for some w” € 3. It contradicts the assumption that v is a monotonically
decreasing verdict that universally monitors @ from below, therefore our claim is correct. Now,
observe that v(u) > &T(u) for all u € X* implies lim v(w) > lim & (w) for all w € ¥*. Since
v universally monitors @ and is monotonic, we get ¢(w) > lim &*(w) for all w € ¥*. By the
definition of @*, we also know that for every property @ and every infinite trace w € X, we
have lim @1 (w) > @(w). Therefore, we conclude that lim &*(w) = @(w) for all w € ¥, i.e.,
& is continuous from above. O

Combining Theorem 3.3.12 and Definition 3.3.11, we immediately get the following characteri-
zation for the continuous-from-below properties.

Corollary 3.3.13. A quantitative property @ is continuous from below iff ¢ is universally
monitorable by a monotonically increasing verdict function.

Let D be a numerical domain and recall the maximal response-time property from Example 3.3.1.
As we discussed previously, it is universally monitorable by a monotonically increasing verdict
function, and therefore continuous from below. By the same token, one can define the minimal
response-time property, which is continuous from above. However, average response time,
which requires a non-monotonic verdict function although it is universally monitorable from
above, is neither continuous from above nor below. We also remark that discounted safety
and co-safety properties [dAHMO3] are continuous from above and continuous from below,
respectively. In Section 3.4, we will discuss how these notions relate to safety and co-safety in
the boolean setting.

3.4 Monitoring Boolean Properties

3.4.1 Boolean Monitorability as Quantitative Monitorability

Quantitative properties generalize boolean properties. For every boolean property P C ¥¢,
the characteristic function 7p : ¥* — {F, T} is a quantitative property, where 7p(w) = T
if we P, and 7p(w) = F if w ¢ P. Using this correspondence, we can embed the main
boolean notions of monitorability within our quantitative framework. For this, we consider
four different boolean value domains:

» B = {F, T} such that F and T are incomparable.

B, =BU{L} such that L <Fand L <T.

B; = {F, T} such that F < T.

By = {F, T} such that T < F.

Most work in monitorability assumes irrevocable verdicts. On the domains B and B, where T
and F are incomparable, the irrevocability of verdicts corresponds to monotonically increasing
verdict functions. For these, positive verdicts in B; and negative verdicts in By are also
irrevocable. The following observations about verdict functions on boolean domains are useful
as well.
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Remark 3.4.1. Let v be a verdict function on B or B, . If v is monotonic, it cannot switch
between T and F, as these values are incomparable. Therefore, v can monitor only () and ¥*
inB. If v is unrestricted, it can switch between T and F only finitely often because the lim sup
and lim inf over every verdict sequence must be defined.

We begin with the classical definition of monitorability for boolean properties [PZ06, BLS11].
Let P C X“ be a boolean property. A finite trace u € X* positively (resp. negatively)
determines P iff for every w € 3, we have uw € P (resp. uw ¢ P). The boolean
property P is classically monitorable iff for every u € >*, there exists t € >* such that ut
positively or negatively determines P. This definition coincides with the persistently informative
monitorability of [AAFT19b]. It is also captured by our definition of existential monitorability
by monotonic verdicts on B .

Proposition 3.4.2. A boolean property P is classically monitorable iff Tp is existentially
monitorable from below by a monotonically increasing verdict function on B .

According to [AAFT19b], a boolean property P is satisfaction (resp. violation) monitorable iff
there exists a monitor that reaches a positive (resp. negative) verdict for every w € P (resp.
w ¢ P). More generally, if monitorability is parameterized by a truth domain as in [FFM12],
then violation and satisfaction monitorability correspond to monitorability over { L, F} and
{L, T}, and capture exactly the classes of safety and co-safety properties, respectively. In our
framework, violation (resp. satisfaction) monitorability is equivalent to universal monitorability
by monotonically increasing verdicts on By (resp. B;), because they require reaching an
irrevocable negative (resp. positive) verdict for traces that violate (reps. satisfy) the property.

Theorem 3.4.3 ([FFM12]). A boolean property P is safe (resp. co-safe) iff p is universally
monitorable by a monotonically increasing verdict function on B¢ (resp. B, ).

A boolean property P is partially monitorable according to [AAFT19b] iff it is satisfaction or
violation monitorable. This corresponds to parametric monitorability over the 3-valued domain
{L,T,F}, and is equivalent to the union of safety and co-safety [FFM12]. Due to the duality
of B and B, in our framework, partial monitorability corresponds to universal monitorability
by monotonic verdict functions on either of these domains.

Corollary 3.4.4. A boolean property P is safe or co-safe iff Tp is universally monitorable by a
monotonic verdict function on B, (equivalently, on By ).

Also defined in [AAFT19b] is the notion of complete monitorability, which requires both
satisfaction and violation monitorability. It is equivalent to our universal monitorability by
monotonic verdict functions on B, meaning that for every trace w € P we reach a positive
verdict, and for every w ¢ P, a negative verdict.

Theorem 3.4.5 ([AAFT19b]). A boolean property P is both safe and co-safe iff Tp is
universally monitorable by a monotonically increasing verdict function on B .

Based on the idea of revocable verdicts, a 4-valued domain {T,F,T.,F.} is also considered
in [FFM12], where T and F are still irrevocable but the inconclusive verdict L is split into
two verdicts T. (“currently true”) and F. (“currently false”) for more nuanced reasoning on
finite traces. In the universe of w-regular properties, their monitorability over this domain

25



3.

QUANTITATIVE AND APPROXIMATE LIMIT MONITORING

corresponds to the class of reactivity properties of the safety-progress hierarchy [CMP93]. In
our framework, unrestricted verdict functions provide a similar effect as revocable verdicts.
We will show in Theorem 3.4.11 and Example 3.4.12 that unrestricted verdict functions on
B, can existentially monitor reactivity properties and more.

Finally, two weak forms of boolean monitorability defined in [AAF*19b] are sound monitorability
and informative monitorability. While sound monitorability corresponds to approximate
monitorability in B, , informative monitorability corresponds to approximate monitorability in
B, by monotonic verdicts but excluding the constant verdict function 1.

3.4.2 Monitoring the Safety-Progress Hierarchy

We first show that some of the modalities of quantitative monitoring are equivalent over
boolean domains. Proposition 3.4.6 also indicates some limitations of flat value domains.

Proposition 3.4.6. Let P be a boolean property and Tp be the corresponding quantitative
property. The following statements are equivalent.

1. 7p is existentially monitorable from below by an unrestricted verdict function on B.
2. Tp is universally monitorable from below by an unrestricted verdict function on B.

3. 7p is universally monitorable from below by an unrestricted verdict function on B .

Proof. The key observation for the proofs is that T and F are incomparable in B and B, as
pointed out in Remark 3.4.1.

(1) <= (2): Let 7p be existentially monitorable from below by a verdict function v
on B. Since T and F are incomparable, for every w € ¥¢, if limsupv(w) < 7p(w) then
lim sup v(w) = 7p(w) in domain B. Therefore, v also universally monitors @ from below in B.
The other direction follows from Definitions 3.2.2 and 3.2.3.

(2) <= (3): The only if direction follows from the fact that B is an extension of B with a
least element. For the if direction, suppose v is a verdict function that universally monitors
7p from below in B, . We construct a verdict function v/ that imitates v in B as follows: let
V'(u) = v(u) if v(u) # L, and v/(u) = v(t) otherwise, where ¢ is the longest prefix of u such
that v/(t) # L (if there is no such prefix, assume w.l.o.g. that v(u) = T). Now, let w € ¥“ be
an infinite trace, and observe that whenever v(w) converges, so does /(w). If v(w) does not
converge, then the subsequential limits must be either (i) L and T, or (ii) L and F. Suppose
(i) is true. Then, there exists a prefix & < w such that for all £ € ©* satisfying 0 < w we
have v(at) = L or v(at) = T. If v(@) = T, then, by construction, 1/ always outputs T starting
from 4. Otherwise, v/ outputs F until v outputs T (which is bound to happen by supposition),
and converges to T afterwards. The case for (ii) is dual. Therefore, for every w € ¥*, we have

lim sup v/(w) = lim sup v(w), which means that v/ universally monitors ¢ from below. [

Proposition 3.4.7. For every boolean property P, we have that Tp is existentially monitorable
from below by a monotonically increasing verdict function on B, iff Tp is existentially monitorable
from below by a monotonically increasing verdict function on B;.

Proof. Suppose 7p is existentially monitorable from below by a monotonically increasing
verdict function v on B;. Consider the following verdict function: v/(u) = F if v(u) = F and
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Tp(uw) = F for all w € ¥¥; and v/(u) =T if v(u) =T or 7p(uw) = T for some w € ¥¢.
Notice that for every u € ¥*, if v(u) = T then 7p(uw) =T for all w € 3¢, and if v(u) =F
then 7p(uw) = F for some w € ¥¥, or v(ut) = T for some t € ¥*. Therefore, we can
equivalently formulate v/ as follows: v/(u) = F if 7p(uw) =F for all w € ¥¥; and v/(u) =T
if 7p(uw) =T for some w € ¥*. The verdict function v/ is indeed monotonically increasing.
Further, limsupv/(w) = F implies that there is © < w such that 7p(uw’) = F for every
w' € ¥, which means that for every w € ¥* we have limsup v/ (w) < 7p(w).

Next, we show that for every u € 3* there exists w € 3¢ such that lim sup v/ (vw) = 7p(uw).
Suppose towards contradiction that for some u € ¥* every w € ¥“ gives us lim sup v/(uw) <
Tp(uw), i.e., limsupr/(uw) = T and 7p(uw) = F. Since limsup v/(uw) = T and v/ is
monotonically increasing, we get v/(t) = T for every ¢ < uw. It means that, by construction,
for every t < uw there exists w’ € X¢ such that 7p(tw’) = T. However, we get a contradiction
since u < uw and 7p(uw’) = F for every w’ € ¥ by supposition. Therefore, we conclude that
V' existentially monitors 7p from below in B;. The if direction can be proved symmetrically. [

Before we relate various modalities of monitoring and boolean value domains to the rest
of the safety-progress classification of boolean properties [CMP93], we discuss how boolean
safety and co-safety are special cases of continuous-from-above and continuous-from-below
properties from Section 3.3. Consider the value domain B;, let P be a safety property and
Tp be the corresponding quantitative property. Observe that for every u € ¥*, we have
71 (u) = F if u negatively determines P, and 7 (u) = T otherwise. Since P is safe, we also
have 7p(w) = lim 755 (w) for every w € 3, which means that 7p is continuous from above.
Moreover, the inverse 7p is a continuous-from-below property on By, and it still corresponds
to the same boolean safety property. Therefore, by Theorem 3.3.12, we get that property
P is safe iff 75 is universally monitorable by a monotonically increasing verdict function on
By. Similarly, co-safety properties correspond to the continuous-from-below properties on By;
and thus, they are exactly the properties that are universally monitorable by monotonically
increasing verdict functions on B;.

Positive, finite boolean combinations of safety and co-safety properties are called obligation
properties [CMP93]. Every obligation property P can be expressed in a canonical conjunctive
normal form N, (S; U C;) for some positive integer n, where S; is safe and C; is co-safe for
all 1 <4 < n. Moreover, an obligation property in conjunctive normal form with n = k is a
k-obligation property.

We prove that obligation properties are universally monitorable in B, which naturally requires
finitely many switches between verdicts T and F. Moreover, we establish an equivalence
between the infinite hierarchy of obligation properties and a hierarchy of verdict functions on
B.

Theorem 3.4.8. A boolean property P is a k-obligation property iff Tp is universally moni-
torable by a verdict function on B that changes its value at most 2k times.

Proof. Suppose P is a k-obligation property, in other words, P = (*_,(S; U C;) for some
integer k > 1 where S; is safe and C; is co-safe for each 1 < i < k. Consider the following
verdict function: v(u) = T if for every 1 < i < k we have u does not negatively determine S;
or u positively determines C;; and v(u) = F if there exists 1 < i < k such that u negatively
determines .S; and u does not positively determine C;. Note that if a finite trace u positively
or negatively determines a boolean property, then so does ut for every finite continuation
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t. If P cannot be expressed as a (k — 1)-obligation property, then there exists a sequence
of finite traces u; < t; < ... < ug < tg, w.l.o.g., such that for every 1 < i < k the trace
u; negatively determines S;, does not negatively determine any S; for j > ¢, and does not
positively determine any C; for j > i; and the trace ¢; positively determines C;, does not
positively determine any C; for j > 4, and does not negatively determine any S; for j > 7.
This is because otherwise some safety or co-safety properties either cannot be determined,
which contradicts the fact that P is an obligation property, or they are determined by the
same finite traces, which contradicts the fact that P is not a (k — 1)-obligation property.
Then, the worst case for v is when P is not (k — 1)-obligation and it reads ¢; above, which
forces 2k switches. One can verify that v always converges to the correct property value, i.e.,
limv(w) = 7p(w) for all w € £*. Therefore, verdict v universally monitors 7p in B.

For the other direction, suppose 7p is universally monitorable by a verdict function on B
that changes its value at most 2k times, and assume towards contradiction that P is not a
k-obligation property. In particular, suppose P is an m-obligation property for some m > k,
which cannot be expressed as a k-obligation, and let P = N2, (.S; U C;) where S; is safe and
C; is co-safe for each 1 < i < m. By the same argument used above, there exist finite traces
up <t < ... < Uy < ty,, w.lo.g., such that for every 1 < ¢ < m the trace u; negatively
determines S;, does not negatively determine any S; for j > ¢, and does not positively
determine any C; for j > 4; and the trace t; positively determines C;, does not positively
determine any C; for j > 4, and does not negatively determine any S; for j > i. Assume
w.l.o.g. that v(¢) = T. After reading each finite trace described above, v has to switch its
output because otherwise we can construct a trace w such that lim v(w) # 7p(w). But since
v can only change its value 2k times, it immediately yields that v cannot universally monitor
7p where P is an m-obligation property for m > k. Therefore, P must be a k-obligation
property. ]

The countable intersection of co-safety properties and the countable union of safety properties,
i.e., so-called response and persistence properties [CMP93], respectively, are also universally
monitorable.

Theorem 3.4.9. A boolean property P is a response property iff Tp is universally monitorable
from below by an unrestricted verdict function on BB,.

Proof. Suppose P is a response property, i.e., there exists a set S C ¥* such that for every
w € Y¥ we have w € P iff infinitely many prefixes of w belong to S. Let v be a verdict
function as follows: v(u) =Tifu € S, and v(u) =F if u ¢ S. Now, let w € ¥“ be a trace.
We have 7p(w) = T iff for every u < w there exists ¢t € ¥* such that ut < w and ut € S iff
limsup v(w) = T. Therefore, v universally monitors 7p from below in B;.

Now, suppose there exists a verdict function v that universally monitors 7p from below in
B;. Because v is a function on B; = {T,F}, there is a set S C ¥* such that v(u) = T for all
u €S, and v(u) =F for all u ¢ S. Then, we get that limsup v(w) = T iff for every u < w
there exists t € ¥* such that ut < w and ut € S iff w € P. Observe that the set S is exactly
as in the definition of a response property, therefore P is a response property. n

The proof for persistence properties is symmetric.

Theorem 3.4.10. A boolean property P is a persistence property iff Tp is universally moni-
torable from below by an unrestricted verdict function on By.
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Positive, finite boolean combinations of response and persistence properties are called reactivity
properties [CMP93]. We consider existential monitorability in B, by unrestricted verdict
functions, and provide a lower bound.

Theorem 3.4.11. For every boolean reactivity property P, we have that Tp is existentially
monitorable from below by an unrestricted verdict function on B .

Proof. Suppose P is a boolean reactivity property, i.e., P = N, (R; U P;) for some k > 1
where R; is a response and P; is a persistence property for every 1 < i < k. By Theorem 3.4.9,
each 7p, is universally monitorable from below by a verdict function p; on B;. For each
1 <'i < k, consider the verdict function v; on B defined as follows: let v;(u) = T if u;(u) =T
or u positively determines R;, let v;(u) = F if u negatively determines R;, and v;(u) = L
otherwise. Note that each v; existentially monitors 7z, from below, and for every w € >¢, if
w € R; for every 1 < i < k, then w € P. Then, we can construct the verdict v to monitor
7p: Let v(e) =T and let  be a memory for v that initially contains €. On non-empty traces,
v outputs L until it observes a trace u such that for every 1 < ¢ < k there exists t; such
that x < ¢; < w and v;(t;) = T. When v reads such a trace u, it outputs T, updates = to
store u, and outputs L until the next trace that satisfies the condition above. Observe that,
for every w, if limsupv(w) = T then 7p(w) = T; and for every u there exists w such that
lim sup v(uw) = 7p(uw) unless R; is negatively determined for some 1 < i < k.

If for some response component R; is negatively determined, then we can switch to monitor
corresponding persistence component instead. Consider the verdict p for 7p, on B, and
construct v, on B, as follows: let v/(u) = F if p;(u) = F or u negatively determines P;,
let vj(u) = T if u positively determines P;, and v/(u) = L otherwise. One can verify that
for every w, if limsup v//(w) = F then 7p(w) = F; and for every u there exists w such that
lim sup v/ (uw) = 7p(uw) unless P; is positively determined. Once P; is positively determined,
we know that all possible future traces satisfy R; U P;. Then, we can switch to the previous
procedure of monitoring the response components, excluding R;, and repeat as many times as
necessary. ]

We now demonstrate that Theorem 3.4.11 is indeed a lower bound for the capabilities of
existential monitors in B .

Example 3.4.12. Let P = U;cy R; such that each R; is a response property. In particular,
the property P belongs to the class of G, sets in the Borel hierarchy, which strictly contains
the reactivity properties. Moreover, suppose that for some j € N property R; is live. Let
be a verdict on B; for Tr,. We construct a verdict v on B, for 7p as follows: v(u) =T if
pu(u) =T, and v(u) = L otherwise. Clearly, for every w € ¥¢, if w € R; then w € P, and
thus lim sup v(w) < 7p(w). Moreover, since R; is live, so is P, i.e., every finite trace u can
be extended with some w such that vw € P, and thus lim sup v(uw) = 7p(uw). It follows
that P is existentially monitorable from below by v on B .

The remaining combinations of monitoring modality and value domain allow us to monitor
every boolean property.

Theorem 3.4.13. For every boolean property P, we have that Tp is existentially monitorable
from below by a monotonically increasing verdict function on B;.
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Proof. Let v be a verdict function such that v(u) = T if u positively determines P, and v(u) =
F otherwise. Observe that v is indeed monotonically increasing in B;, and lim sup v(w) < 7p(w)
for every w € ¥¢. Let u € ¥* be an arbitrary trace. If v(u) =T, then 7p(uw) = T for every
continuation w € ¥¥; otherwise, there exists some w € 3* such that 7p(uw) = F. It implies
that for every u € ¥* there exists w € X* such that lim sup v(uw) = 7p(uw). Therefore, 7p
is existentially monitorable from below by v. O]

Combining Proposition 3.4.7 and Theorem 3.4.13, we carry this result over to domain By.

Corollary 3.4.14. For every boolean property P, we have that Tp is existentially monitorable
from below by a monotonically increasing verdict function on By.

Tables 3.1 and 3.2 summarize the results of this section. The classes of safety, co-safety,
obligation, response, persistence, reactivity, and classically monitorable boolean properties are
denoted by Safe, CoSafe, Obl, Resp, Pers, React, and Mon, respectively. We note that the
upper bound for unrestricted existential monitors on B, is an open problem.

Table 3.1: Correspondence between classes of boolean properties and universal monitorability.

Universally monitorable from below

D Monotonically increasing Unrestricted verdict

B 0 or v~ (Rem. 3.4.1) Obl (Thm. 3.4.8)

B, Safen CoSafe (Thm. 3.4.5) Obl (Prop. 3.4.6 + Thm. 3.4.8)
B, CoSafe (Thm. 3.4.3) Resp (Thm. 3.4.9)

By Safe (Thm. 3.4.3) Pers (Thm. 3.4.10)

Table 3.2: Correspondence between classes of boolean properties and existential monitorability.

Existentially monitorable from below

D Monotonically increasing Unrestricted verdict

B 0 or X¢ (Rem. 3.4.1) Obl (Prop. 3.4.6 + Thm. 3.4.8)
B, Mon (Prop. 3.4.2) at least Mon U React (Thm. 3.4.11)
B; any P CX¢ (Thm. 3.4.13) any P C 3¢ (Thm. 3.4.13)

By any P C X¢ (Cor. 3.4.14) any P C 3¢ (Cor. 3.4.14)

We conclude the section with a simple example that demonstrates the concept of precision in
the context of boolean properties.

Example 3.4.15. Let P = Q(a VbV ¢), where { is the eventually operator [PP18], and Tp
be the corresponding quantitative property. Consider the following verdict functions on B,:

= v,(u) =T iff u contains a,

Vap(u) = T iff u contains a or b,

Vpe(u) = T iff u contains b or c,

= vae(u) =T iff u contains a or b or c.
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All these verdict functions are monotonic. Moreover, functions v,, vy, and vy. existentially
monitor Tp from below while vy, monitors universally.

Observe that v, is more precise than v,, because for every finite prefix u that yields v,(u) = T,
we also get vy, (u) = T, but not vice versa, considering the traces that contain b but not
a. However, we cannot compare vy, and vy, as for every u < a*, we have vp.(u) < Vgp(u)
and lim sup v.(a) < limsup vg,(a”), and vice versa for ¢. Finally, Vg is the most precise
among these verdicts as it universally monitors Tp.

3.5 Approximate Register Monitors

3.56.1 Verdicts Generated by Register Machines

In this section, we follow [FHS18, FHK20] to define register machines as a model for generating
an output stream that represents a verdict sequence for monitoring quantitative properties.
We consider a set of integer-valued registers denoted X. A valuationv : X — 7 is a mapping
from the set of registers to integers. An update is a function from valuations to valuations,
and a test is a function from valuations to B. The set of updates over X is denoted by I'(X),
and the set of tests by II(X). We describe updates and tests over X using integer- and
boolean-valued expressions, called instructions.

Definition 3.5.1. A (deterministic) register machine is a tuple M = (X, Q, 3, A, qo, D, \),
where X is a finite set of registers, () is a finite set of states, X is a finite alphabet,
ACQxExII(X)xT'(X)xQ is a set of edges, qo € Q) is the initial state, D is an output
value domain, and )\ : Q x Z* — I is an output function such that for every state q € Q,
letter o € %, and valuation v, there is exactly one outgoing edge (q,0,¢,7,q") € A with

v = .

Let M = (X,Q,%, A, qo, D, \) be a register machine. A pair consisting of a state ¢ € () and a
valuation v : X — Z constitute a configuration of M. The initial configuration (go, vo) of M is
such that vo(z) = 0 for every x € X . Between two configurations of M, the transition relation
is defined by (q,v) = (¢/,V') iff there exists an edge (q, 0, $,7,¢) € A such that v = ¢ and

v/ = ~y(v). On an infinite word w = 0,05 . .., the machine M produces an infinite sequence of
transitions (qo,vo) == (q1,v1) = ---, and an infinite output sequence (\(g;,V;))ien.

Definition 3.5.2. A register machine M = (X,Q,%, A, qy, D, \) generates the verdict
function v : ¥* — D iff for every finite trace u € ¥* the machine M after reading u reaches a
configuration (q,v) such that A(q,v) = v(u).

We mainly focus on a simple form of register machines which can only increment, reset, and
compare registers. The according instruction set is denoted by (0,+1,>), and expressively
equivalent to the instruction set (0, +1,—1, >0), as was shown in [FHS18].

Definition 3.5.3. A counter machine is a register machine with the instructions x < 0,
x < x+1, and x > y for registers x,y € X and an output function that in every state outputs
0, 0o, or one of the register values. A verdict function v is a k-counter verdict function iff v
is generated by a counter machine M with k registers. A quantitative property ® is k-counter
monitorable iff there is a k-counter verdict function that monitors ®.
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Note that we can use the various modalities of monitoring defined in Section 3.2. For instance,
a property @ is existentially k-counter monitorable from below iff @ is k-counter monitorable
and the witnessing verdict function existentially monitors @ from below.

One can also define extended counter machines with generic output functions. For example, a
verdict function generated by an extended 3-counter machine (with an output function that
can perform division) can universally monitor the average response-time property from above,
as demonstrated in Example 3.3.3.

We remark that our model of register machines is more general than register transducer

models operating over uninterpreted infinite alphabets, which typically cannot count (see, e.g.,
[KMB18]).

3.5.2 Precision-Resource Tradeoffs for Register Machines

In the following example, we illustrate how the arithmetic operations of register machines can
play a role in precision-resource tradeoffs for monitoring.

Example 3.5.4 (Adders versus counters). Let ¥ = {a,b} and D = N. Let & be a property
such that &(w) = 2", where n is the length of the longest uninterrupted sequence of a’s in
w € X if it is bounded, and ®(w) = oo otherwise. Consider a 2-register machine M with the
following instructions: x <— 1, x <~ x +y, and x >y for x,y € X. When M starts reading
a segment of a’s, it resets one of its registers, say x, to 1 and doubles its value after each
a. After the segment ends, it compares the value of x with the other register, say y, and
stores the maximum in y, which determines the output value. This way M can generate v,qq
such that v,q4q(u) = 2", where n is the length of the longest uninterrupted sequence of a’s in
u € X*. Verdict v,qq is monotonically increasing and it universally monitors @. Now, suppose
that we have, instead, a verdict v.o . that is generated by a 2-counter machine. Since the
counter values can only grow linearly, we can have veoyn:(u) = 2n for n as above. Although
it grows much slower, v.y,n: existentially monitors @ from below, because the extension a*
yields 1im sup veount(sa®) = p(sa®) = oo for every uw € ¥*. Since vaqq universally monitors @,
it is clearly more precise than voun:.

Recall the two-pair maximal response-time property from Section 3.1. We can generalize
this property to give an example for a precision-resource tradeoff on the number of counter
registers that are available for monitoring.

Example 3.5.5 (Counter machine). Let k € N and let ¥y, = {rq,,acky,...,rqy;,acky,oo}.

The k-pair maximal response-time property @ : »¥ — N specifies the maximal response times
for all (rq,ack) pairs in 3. More explicitly, for every 1 < i < k, let ®; specify the maximal
response-time for pair (rq;,ack;) as in Example 3.3.1, and let ®(w) = (P (w), ..., Pr(w)) for
every w € 3. As hinted in Section 3.1, there is a 2k-counter verdict function vy, which simply
combines the 2-counter verdict functions ji; that universally monitor ®; for all 1 < i < k.
Specifically, vop(u) = (p1(u), ..., ug(w)) for every u € 3*.

Observe that a (k + 1)-counter verdict function vy, cannot universally monitor @, because
whenever it reads a trace that contains more than one active request, it needs to either ignore
some active requests and process only one of them, or forget the maximal response time for
some pairs and use those counters to process the active requests. However, it can existentially
monitor @ from below, because every finite trace can be extended with a continuation w in
which all previously active requests are acknowledged and the true maxima occur in w one
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by one. If the server has at most one active request at any given time, then k + 1 counters
suffice for universal monitoring. This is because it only needs to use one register to process
the current response time while storing the maxima in the remaining k counters. Let &' be
the variant of @ under the assumption of no simultaneous requests, and suppose we have a
(g + 1)-counter verdict function Vi By the same reason that vy cannot universally monitor
@, the function Vi cannot universally monitor @'. However, for every odd number1 < i < k,
we can assign one counter to store max(f;(u), p;+1(u)), which provides an over-approximation
for either ®; or &, .1 while being precise for the other. Overall, although it can provide a
meaningful approximation, the function Vi is less precise than vy 1.

The following theorems generalize this example.

Theorem 3.5.6. For every k > 1, there exists a quantitative property @, such that @, is
universally monitorable by a monotonically decreasing k-counter verdict function v,. Moreover,
for every { < k and every monotonically decreasing (-counter verdict function v, that
approximately monitors @y, from below (resp. above), there exists a monotonically decreasing
(¢ 4 1)-counter verdict function v, that approximately monitors py, from below (resp. above)
such that vy, is more precise than v,.

Proof. For convenience, we consider the (0,41, —1,>0) variant of counter machines. Let
Yr={1,...,k}. Forevery u € ¥ and i € ¥ denote by |u|; the number of occurrences of
the letter ¢ in u. Consider the boolean safety property P, = {w € 3¢ |V1 <i<k:VYu<w:
lul; > |uliz1}, and let @, be as follows: ¢y (w) = oo if w € Py, and &p(w) = |t| otherwise,
where t is the shortest prefix of w that negatively determines P,. We construct a verdict
function vy, as follows: v(u) = oo if u does not negatively determine Py, and v (u) = |t
otherwise, where t is the shortest prefix of u that negatively determines P,. The verdict v is
monotonically decreasing and it can be generated by a k-counter machine where, for every
1 <i < kandu € X}, the counter x; stores |u|; — |u|;+1, and z stores |u|. Moreover,
because we need k£ — 1 counters to recognize P; (see Thm. 4.3 in [FHS18]) and one more to
store the output, @, is not universally /-counter monitorable for ¢ < k.

Let ¢ < k, and take a monotonically decreasing ¢-counter verdict function v, that approximately
monitors @, from below. Note that, for every u € X7, if the generating counter machine
does not store a linear function a(u) < |ul, then v, can be either the constant 0 function
or a function that switches from oo to 0 and never misses a violation. Then, we construct
an (¢ + 1)-counter machine that stores |u| in the new counter. If v, is constant, it uses
the rest to count |u|; — |u|i+1 for 1 < i < ¢ and catch violations, similarly as v above;
otherwise, it outputs |u| instead of 0. The resulting verdict 4, is monotonically decreasing
and approximately monitors p; from below. It is also more precise than v,. Now, suppose the
generating (-counter machine counts a linear function a(u) < |u|. Since this machine cannot
recognize P, there exists w € Py such that lim v,(w) < oo, i.e., v incorrectly concludes
that |u|; < |ul;4+1 for some u < w and 1 < i < k. We construct an (¢ + 1)-counter machine
M where the additional counter keeps track of |u|; — |ul;1 for every u € X}, the output
register stores |u|, and the rest behave the same as in v4,. Moreover, whenever v, concludes
that |u|; < |u|;11, the behavior of M is determined by the correct value of |u|; — |u|;11 stored
in the new counter. It yields that the verdict vy, generated by M is more precise than v,
because lim vy (w) < lim vy41(w) for some trace w € ¥*. The case for monitoring from above
is similar. O
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Since monitoring @ in the proof above involves recognizing a boolean property P, the
counter machine for @, must be able to distinguish traces with respect to P;. To achieve this,
intuitively, the machine needs a counter for each “independent” quantity. Also, the use of
a variable-size alphabet >, is merely a convenience. We can encode every word over X in
binary with the help of an additional separator symbol. More explicitly, we can take a ternary
alphabet ¥ = {0,1,#} to represent every letter in X as a binary sequence and separate
the sequences by #. We combine these observations to construct a quantitative property for
which counting does not suffice for universal monitoring no matter the number of registers,
but each additional register gives a better approximation.

Theorem 3.5.7. There exists a quantitative property ® such that for every k > 1 and every
k-counter verdict function v, that approximately monitors ¢ from below (resp. above), there
exists a (k + 1)-counter verdict function vy, that approximately monitors & from below (resp.
above) and is more precise than vy.

Proof. Let ¥ = {0,1,#}. For every u € ¥* and i € N, let n;(u) denote the number of
occurrences of the binary sequence that corresponds to 7 in the longest prefix of u that ends
with #. For example, if we have u = 001410, then ny(u) =1 and ne(u) = 0. Similarly as in
the proof of Theorem 3.5.6, consider counter machines with instructions (0, +1, —1,>0) and
the following boolean safety property: P = {w € ¥¥ | Vi € N: Vu < w : n;(u) > n1(u)}.
We define the quantitative property ¢ as ¢(w) = oo if w € P, and &(w) = |t|x where ¢ is the
shortest prefix of w that negatively determines P. Observe that P is a generalization of Py in the
proof of Theorem 3.5.6, and it requires counting infinitely many distinct quantities. Therefore,
one can show that, to universally monitor @, one needs infinitely many counter registers.
However, for every k > 1, there exists a k-counter verdict function v, that approximately
monitors ¢ from below or above, for instance, by keeping track of n;(u) — n;y1(u) for every
1 <4 < k and counting #'s in the remaining register.

We now construct a (k 4 1)-counter verdict function vy from v,. Suppose v, approximately
monitors @ from below. Note that the generating machine of v} lacks the resources to
distinguish traces with respect to P correctly. Therefore, regardless of the monotonicity of
Vg, a similar reasoning as in the proof of Theorem 3.5.6 applies. We can use the additional
counter of v to keep track of n;(u) — n;41(u) or |u|y for every u € ¥* while the rest
operate the same as in v. It yields that lim sup v (w) < lim sup vg41(w); thus v4,q is more
precise than 4. One can similarly show the case for monitoring from above. O]

3.6 Conclusion

We argued for the need of a quantitative semantic framework for runtime verification which
supports monitors that over- or under-approximate quantitative properties, and we provided
such a framework.

An obvious direction for future work is to systematically explore precision-resource tradeoffs for
different monitor models and property classes. For example, a quantitative property class that
we have not considered in this work is the limit monitoring of statistical indicators [FHK20].
Other interesting resources that play a role in precision-resource tradeoffs are the “speed” or
rate of convergence of monitors, that is, how quickly a monitor reaches the desired property
value, and “assumptions”, that is, prior knowledge about the system or the environment that
can be used by the monitor [HS20, AAF™21a]. We also plan to consider the reliability of
communication channels [KHF20] and how it relates to monitoring precision.

34



3.6. Conclusion

Another question is the synthesis problem: given a quantitative property @ and a register
machine template (instruction set and number of registers), does there exist a register machine
M generating a verdict function v that universally or existentially monitors @ from below or
above?

Building on our definitions of continuous-from-above and continuous-from-below quantitative
properties, one can define a generalization of the safety-progress hierarchy [CMP93] to obtain
a Borel classification of quantitative properties.

Lastly, a logical extension of monitoring is enforcement [LR10, FMFR11, FFM12], that is,
manipulating the observed system'’s behavior to prevent undesired outcomes. We aim to
extend the notion of enforceability from the boolean to the quantitative setting and explore
precision-resource tradeoffs for enforcement monitors (a.k.a. shields [KABT17]).
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CHAPTER

Abstract Monitors for Quantitative
Properties

In this chapter, the following publications were re-used in full:

» Thomas A. Henzinger, Nicolas Mazzocchi, N. Ege Sarac. Abstract Monitors for Quan-
titative Specifications. In Runtime Verification - 22nd International Conference, RV
2022.

4.1 Introduction

Online monitoring is a runtime verification (RV) technique [BFFR18] that, by sacrificing
completeness, aims to lighten the burden caused by exhaustive formal methods. A monitor
watches an unbounded sequence w of observations, called trace, one observation at a time. At
each time n > 0, it tries to provide information about the value assigned to w by the property.
For a boolean property P, after each trace prefix u, the monitor may output one of three
values: all infinite extensions of u satisfy P, violate P, or neither [BLS11].

Quantitative properties [CDH10b] generalize their boolean analogs by assigning each trace
w a value from some richer domain. For example, the boolean property Resp assigns true
to w iff every observation rq in w is eventually followed by an observation ack in w, while
the quantitative property MaxRespTime assigns the least upper bound on the number of
observations between each rq and the corresponding ack, or oo if there is no such upper
bound.

In the limit monitoring of a quantitative property @ over a trace w, a limit (e.g., lim sup,
lim inf) of the infinite sequence of monitor outputs should provide information about the value
&(w) assigned to the trace. For example, a “natural way to monitor” MaxRespTime is to
have the monitor output, at each time, the maximum of (i) the maximal response time so far
and (ii) the time since the least recent pending rq, if there is a pending rq. The limsup (and
lim inf) of this infinite output sequence converges towards MaxRespTime.

In contrast to its boolean analog, the quantitative setting naturally supports approximation. A
monitor has error § > 0 if, for all infinite traces, the limit of the output sequence is within §
of the property value. In particular, this leads to precision-resource tradeoffs for quantitative
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monitors: The provisioning of additional states, registers, or operations may reduce the error,
and a larger error tolerance may enable monitors that use fewer resources.

In this chapter, we provide a formal framework for studying such precision-resource tradeoffs for
an abstract definition of quantitative monitors. This abstract framework can be instantiated, for
example, by finite-state monitors or register monitors, where a finite-state monitor remembers
a bounded amount of information about each trace prefix, and a register monitor remembers
a bounded number of integer values [FHS18]. For us, an abstract monitor partitions, at each
time n, all prefixes of length up to n into a finite number of equivalence classes such that if
two prefixes u; and uy are equivalent, then the monitor outputs the same value after observing
uq and uo. The number of equivalence classes introduced at time n provides a natural measure
for the resource use of the abstract monitor after n observations.

In this setting, where the resource use of a monitor is measured, we also want to measure the
precision of a monitor. To define the precision of a monitor after a finite trace prefix, we need
to enrich our definition of quantitative properties: We let a quantitative property assign values
not only to infinite traces but also to finite traces. Indeed, many property values for infinite
traces are usually defined as limits [HS21]. For example, what we called above the “natural
way to monitor” MaxRespTime using two counters is, in fact, the usual formal definition of
the quantitative property MaxRespTime.

Once both properties and monitors assign values to all finite traces, there is a natural definition
for the precision of a monitor: At each time n, the prompt error is the maximal difference
between the monitor output and the property value over all finite traces of length up to n.
Furthermore, the limit error is the least upper bound on the difference between the limit of
monitor outputs and the limit of property values over all infinite traces. Note that if the
prompt error of a monitor is 0, then so is the limit error, but not necessarily vice versa. An
exact-value monitor (i.e., a monitor with prompt error 6 = 0) implements the property as it
is defined. In contrast, an approximate monitor (i.e., a monitor with prompt error § > 0) of
the same property may use fewer resources. An approximate monitor may still achieve limit
error 0, which is a situation of particular interest that we study.

Given an abstract monitor, one way to obtain a new monitor that uses fewer resources use
is to merge some equivalence classes, and one way to increase the precision is to split some
equivalence classes. However, this naive approach toward reaching a desired precision or
resource use is not always the best. For an approximate monitor with a given prompt error
and limit error, the goal is resource optimality, i.e., minimizing the resource use as much as
the error threshold allows. We will see that merging the equivalence classes of a given monitor
may not yield a resource-optimal one.

The limit error of a monitor is bounded by its prompt error. We also investigate the case
where we require a certain limit error while leaving the prompt error potentially unbounded.
We will see that allowing arbitrary prompt error may not permit the monitor to save resources
if the desired limit error is fixed. We say that such properties have resource-intensive limit
behavior. In fact, MaxRespTime displays resource-intensive limit behavior. Other examples
include a subclass of reversible properties. Reversibility is a notion from automata theory
characterized by the property being realizable with a finite-state automaton that is both
forward and backward deterministic. A similar notion, generalized to the quantitative setting,
can be introduced in our framework, allowing an abstract monitor to process an infinite trace
in a two-way fashion.
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Overview. Section 4.2 formalizes the framework of abstract monitors and provides insights
on relations between basic notions such as resource use and precision.

Section 4.3 focuses on monitoring with bounded error over finite traces. First, in Subsec-
tion 4.3.1, we show that the exact-value monitor over finite traces is unique and resource
optimal for every property. Additionally, for resource-optimal approximate monitors, we prove:
(i) they are not unique in Subsection 4.3.1, (ii) they do not necessarily follow the structure
of the exact-value monitor in Subsection 4.3.2, and (iii) they do not necessarily minimize
their resource use at each time in Subsection 4.3.2. Then, in Subsection 4.3.3, we study the
precision-resource tradeoff suitability: We exhibit (i) a property for which we can arbitrarily
improve the resource use by damaging precision, and (ii) another for which we arbitrarily
improve the precision by damaging the resource use.

Section 4.4 focuses on monitoring without error on infinite traces. In particular, in Sub-
section 4.4.1 we provide a condition for identifying properties with resource-intensive limit
behavior, for which having zero limit error prevents the tradeoff between resource use and error
on finite traces. This condition captures two paradigmatic properties: (i) maximal response
time and (ii) average response time. Finally, in Subsection 4.4.2 we investigate reversible
properties, which can be implemented in a manner both forward and backward deterministic. A
subclass of reversible properties have resource-intensive limit behavior, which we demonstrate
through the average ping property.

Section 4.5 concludes the chapter and addresses future research directions our framework
offers.

Related work. In the boolean setting, several notions of monitorability have been proposed
over the years [BLS11, FFM12, FAAT17]. Much of the theoretical efforts have focused
on regular properties [AAF*21b, BLS10, MB15], although some proposed more expressive
models [BFH112, BKMZ15, dSST05]. We refer the reader to [BFFR18] for coverage of these
and more.

Verification of quantitative system properties have received significant attention, both in the
deterministic [CDH10b, DDG'10, CDE*10, HPPR18] and the probabilistic setting [Kwi07,
BCFK15, CD11, FKN*11] In the context of RV, the literature on properties with quantitative
aspects features primarily metric temporal logic and signal temporal logic [HOW14, JBG'18,
MNO04, MCW21a, MCW21b]. Other efforts include processing data streams with a focus on
deciding their properties at runtime [AMS17, AMS19] and an extension of weighted automata
with monitor counters [CHO16]. None of these works focus on monitoring quantitative
properties with approximate verdicts or the relation between monitorability and monitor
resources.

Approximate methods have long been used in verification and related areas [Cou96, HSO0O,
Alb03], including distributed computation of aggregate functions [CLKB04, SBAS04, SBY06]
and approximate determinization or minimization of quantitative models [AKL13, BH12, HK12].
To the best of our knowledge, the use of approximate methods in monitoring mainly concentrates
on the property rather than taking approximateness as a monitor feature and studying the quality
of monitor verdicts. In predictive or assumption-based monitoring [CTT21, ZLD12] and for
monitoring hyperproperties [SSSB21], an over-approximation of the system under observation
is used as an assumption to limit the set of possible traces [HS20]. Similarly, in runtime
quantitative verification [CGJP13, NKF20], the underlying probabilistic model of the system
is approximated and continually updated. For monitoring under partial observability, [ADL14]
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describes an approach to approximate the given property for minimizing the number of
undetected violations. In the branching-time setting, [AAFT21a] uses a monitorable under-
or over-approximation of the given property to construct an “optimal” monitor. Nonetheless,
a form of distributed and approximate limit monitoring for spatial properties was studied
in [ACD*21]. None of these works consider approximateness as a monitor property to study
the relation between monitor resources and the quality of its verdicts.

Recently, [FHS18] introduced a concrete monitor model with integer-valued registers and stud-
ied their resource needs. This model was later used for limit monitoring of statistical indicators
of traces under probabilistic assumptions [FHK20]. A general framework for approximate
limit monitoring of quantitative properties was proposed in [HS521]. However, that framework
focuses exclusively on limit behaviors and on specific monitor models such as finite automata
and register machines, thus allowing only limited precision-cost analyses. The main innovations
of the present work over previous work are twofold. First, we abstract the monitor model and
its resource use away from specific machine models. Second, by introducing prompt errors, we
study the resource use of monitors over time and relate this to the monitoring precision over
time. This more nuanced framework enables a more fine-grained analysis and comparison of
different monitors for the same property concerning their precision and resource use.

4.2 Definitional Framework

Recall that a value domain D is a complete lattice, unless stated otherwise, and a quantitative
property @ : ¥ — DD is a total function from infinite traces to values. In this chapter, we
focus on quantitative properties whose value domain is R or a bounded subset thereof.

A binary relation ~ over >* is an equivalence relation when it is reflexive, symmetric, and
transitive. For a given equivalence relation ~ over ¥* and a finite trace u € X*, we denote by
[u] the equivalence class of ~ in which u belongs. When ~ is clear from the context, we
write [u] instead. A right-monotonic relation ~ over X* fulfills u; ~ uy = uyt ~ ust for all
Ui, U2, te X

Throughout the chapter, we use [J and ¢ to denote the linear temporal logic (LTL) operators
always and eventually, respectively. See [PP18] for interpretation of LTL operators on infinite
traces, and [GV13, CMP93, EFH"03] on finite traces.

4.2.1 Limit Properties

In this chapter, we focus on properties that can be defined as limits of value sequences. Let
us recall below the definition of limit properties capturing this idea.

A finitary property m: >* — D associates a value with each finite word. A value function
Val: D¥ — DD accumulates an infinite sequence of values to a single value. Given an infinite
sequence of values © = z125..., we write LimInf(z) = lim,, . inf{x; | ¢ > n} and
LimSup(z) = lim, oo sup{x; | @ > n}. Whenever LimInf(z) = LimSup(x) for a given
sequence x, we simply write Lim(z) for its value.

A property @ : ¥ — D is a limit property when there exists a finitary property 7 : ¥* — D
and a value function Val : D* — D such that ¢(w) = Val, <, 7(u) for all w € 3. We denote
this by @ = (7, Val), write ®(u) instead of 7(u) when u € ¥*, and call & a Val-property.

Together with a given property @, we define the right-monotonic equivalence relation ~; as
follows. For all uy,us € ¥* we have uy ~j ug iff m(uit) = m(ust) holds for all ¢ € X*.
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We define below the discounted response property. Throughout the section, we will use this
property as a running example.

Example 4.2.1. Let > = {rq,ack, 00} and consider the LTL response property P = [(rq —
Qack). Let 0 < X\ < 1 be a discount factor. We define DiscResp(u) = 1 if u € P, and
DiscResp(u) = A" otherwise, where n = |u| — |t| and t < u is the longest prefix of t with
t € P. We define $pr = (DiscResp, LimSup), the discounted response property. Intuitively,
Ppr assigns each finite trace a value that shows how close the system behaves to P such that,
at the limit, it denotes whether the infinite behavior satisfies P or not.

Now, take two traces ui,uy € ¥*. We claim that uy ~3__ uy iff either (i) both traces have no
pending request or (ii) both have a request pending for the same number of steps. First, we
assume uy ~g_ Uy holds and note that we must have ®pr(uit) = Ppr(ust) for every t € ¥*.
Then, we eliminate the cases other than (i) and (ii) as follows. If, w.l.o.g., u; € P and us ¢ P,
then ®pr(ug) < Por(u1) = 1, thus ug =<5 us. If, w.l.o.g., uy has a request pending for i
steps and uy for j > i steps, then Ppgr(uz) = N < X' = Ppr(uy), thus uy ~j  uy. The
other direction is similar.

4.2.2 Abstract Monitors

We are now ready to present our abstract definition of quantitative monitors.

Definition 4.2.2 (Monitor). A monitor M = (~, ) is a tuple consisting of a right-monotonic
equivalence relation ~ on X* and a function y: (¥*/ ~) — R. Let O, Oim € R be error
thresholds. We say that M is a (Jfn, O1im )-monitor for a given property @ = (, Val) iff

s |m(u) — y([u])| < Ogin for all u € 3%, and
= |Valy~w(m(u)) — Valy<w (7([u])| < jim for all w € X,

We say that M has a prompt error of o5, and a limit error of dyp,.

In the sequel, we write as shorthand m(w) for (m(u;))ien and y([w]) for (y([wi]))ien for every
w € X and its prefixes u; < w of increasing length i. We further write M(u) = v([u]) when
u € ¥* and M(w) = Val(y([w])) when w € ¥¢.

Observe that for every property there is an obvious monitor that imitates exactly the property,
which we define as follows.

Definition 4.2.3 (Exact-value monitor). Let ¢ = (m,Val) be a property. The exact-value
monitor of ¢ is defined as Mg = (~},u — 7(u)).

A monitor for a given property is approximate when it differs from the property’s exact-value
monitor. Below, we demonstrate the exact-value monitor and an approximate monitor for the
discounted response property.

Example 4.2.4. Recall from Example 4.2.1 the discounted response property @pr. Clearly,
its exact-value monitor is Mgy, = (~3. ., Yoor) Where Yoy, ([u]) = Ppr(u) for allu € ¥*. Let
us define another monitor M = (~,~) such that u; ~ uy iff either uy,uy € P or uy,us ¢ P
for every uy,us € X*; and y([u]) = 1 ifu € P, and v([u]) = 0 if u ¢ P. Note that for every
w € X* we have w € P iff infinitely many prefixes of w belong to P, therefore M has no
limit error. However, it yields a prompt error of A since it immediately outputs 0 instead of
discounting on finite traces. Hence, M is a (\,0)-monitor for Ppg.
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R(M;) <« R(M;y) = R(M;) < R(M,)

/ /

r(M)) < r(Mp) == r(M,) <r(My)

Figure 4.1: Implications between the comparisons of resource use.

Next, we prove that our definition constrains monitors not to make two equivalent traces too
distant.

Proposition 4.2.5. Let M = (~,7) be a (0fin, d1im )-monitor for the property & = (m,Val).
For all uy,us € 3%, if uy ~ ug, then |®(uy) — P(us)| < 204n.

Proof. By definition of M we have that —d5, < m(u1) — Y([u1]) < 5o as well as o5, >
—m(uz) + y([ug]) > —6n. If uy ~ ug then v([u;]) = v(uss]) and thus —25, < 7(uy) —
7r(u2) S 2(5ﬁn. ]

4.2.3 Resource Use of Abstract Monitors

As we demonstrated above, quantitative monitors may have different degrees of precision. A
natural question is whether monitors with different error thresholds use a different amount of
resources. To answer this question in its generality, we consider the following model-oblivious
notions of resource use.

Definition 4.2.6 (Resource use). Let M = (~,~) be a monitor. We consider two notions of
resource use for M defined as functions from N to N. We define step-wise resource use as
r, (M) = |Z5"/~| — |Z<"/~| and total resource use as R,,(M) = 37 r;(M) = |25 /~|.

Given two monitors M; and M5, we compare their resource use as follows. We write r(M;) <
r(M;) when there exists ng € N such that for every n > ny we have r,,(M;) < r,(Ms). In
particular, when it holds for ny = 1, we write r(M;) < r(My). We define R(M;) < R(My)
and R(M;) <« R(My) similarly. Figure 4.1 shows how these notions relate. Moreover,
definitions of r(M;) x r(Mj) and R(M;) x R(My) for x € {<, <, >,>,>, >} are as
expected.

The monitor M uses at most as many resources as My when we have r(M;) < r(M,).
If we further have r,,(M;) < r,, (M) for some n > 1, then M, uses fewer resources than
M. We similarly define the cases for using at least as many and more resources.

Given a property @ and a (Jfn, Ojim )-monitor M for &, we say that M is resource optimal for
& when for every (Jfin, d1im )-monitor M’ for @ we have r(M) < r(M’), i.e., M uses at most
as many resources as any other monitor M’ with the same error thresholds.

Example 4.2.7. Recall from Examples 4.2.1 and 4.2.4 the discounted response property
PpR, its exact-value monitor Mgy, and the (X, 0)-monitor M. We claim that M uses fewer
resources than Mg,.. To show this, we first point out that ro(M) = ri(M) = 1 and
r,(M) =0 for every n > 2. However, r,(Magy,) > 1 for every n > 0 because at each step
the trace rq" is not equivalent to any shorter trace. Therefore, while Mg, is an infinite-state
monitor, M is a finite-state monitor, and r(M) < r(Mg,,).
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Finally, we conclude the description of our framework by proving the implications in Figure 4.1
to establish how different ways to compare resource use of monitors relate as well as a
refinement property for resource-optimal monitors.

Proposition 4.2.8. For every monitor My and M, the implications in Figure 4.1 hold.

Proof. We only prove that r(M;) < r(My) implies R(M;) < R(Mj). The left-to-right
implications in Figure 4.1 are trivial, and the other bottom-to-top implication follows from
similar arguments. Assume by hypothesis that r(M;) < r(My), i.e., there exists np € N
such that, r,(M;) < r,(My) for all n > ng. Let x; = R,,,_1(M;) and x5 = R,,,_1(Ms).
If 1 < x5, the implication holds because r,,(M;) < r,(Ms) for all n > ny means that
R,.(M;) < R,(Msy) for all n. > ng. If 1 > x5, the following holds:

Rty —ao (M2) = 22 4+ 3000772 1 (M,)
> Ty + ST (p (M) + 1)
=xo+ (r1 —x2+ 1)+ Z?:Oj;fl_m (M)
> Rno—&-m—zg (Ml)

Hence ngy = ng + x1 — x5 fulfills Rn6(M1) < Rné(./\/lQ). To conclude, for all n > n{ we have
that
Rn(/\/ll) = Rné(Ml) + Z I’i(./\/ll) < Rng(Mz) + Z I‘i(Mg) = Rn(./\/lg) ]

i=ngy+1 i=ngy+1

Proposition 4.2.9. Let @ be a property and 64, i be two error thresholds. Consider two
(Ofin, O1im ) -monitors My = (~1,7v1) and My = (~g, o) for @. If ~1 C ~q and M is resource
optimal, then ~1 = ~y. Thus, My is also resource optimal.

Proof. By resource optimality, we get r(M;) < r(My) which implies [X57/~ ;| < |25/~
for all n € N, by Proposition 4.2.8. Hence ~ has fewer equivalence classes compared to ~s.
Finally, since ~; C ~5, we must have that ~; = ~s. ]

We remark that our definitional framework can be instantiated by existing monitor models,
e.g., finite state automata [BLS11] or register monitors [FHS18, HS21]. More concretely, let
us consider the discounted response property @pr from Example 4.2.1. Its exact-value monitor
Mg, from Example 4.2.4 can be implemented by a register monitor that stores the value
n in its single register while checking for the LTL property P using its finite-state memory.
On the other hand, the monitor M from Example 4.2.4 can be implemented by a finite state
machine.

4.3 Approximate Prompt Monitoring

The original purpose of a monitor is to provide continuous feedback about the system status
with respect to the property [BLS07, FFM12]. Focusing only on limit monitoring may allow an
unbounded prompt error and thus fail to fulfill this task. In this section, we consider prompt
monitoring, i.e., the case where the monitor performs bounded prompt error. First, we remark
that considering a bounded prompt error implicitly bounds the limit error by definition.

Fact 4.3.1. Let & be a property and g, O1im € R be error thresholds. If M is a (i, Olim ) -
monitor for @, then it is also a (Jn, x)-monitor for @ where x = min{dsy, Otim } -
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& = (m,Lim) where:

0 ifu=ce

3x ifu=a

5x ifu==o
Tiur» S Tr ifu=c

10x if u€e dad*

10z +y ifue XbX*

10z + 2y if u € XeX*

Figure 4.2: A property @ over > = {a, b, c} where x > 0 and y < z, and two resource-optimal
(x,y)-monitors for @ shown on top of the exact-value monitor Mg. As indicated by the
output values on the dotted and dashed rectangles, the approximate monitors merge some
equivalence classes of Mg to save resources at the cost of losing precision.

4.3.1 Uniqueness of Resource-optimal Prompt Monitors

The exact-value monitor is arguably the most natural monitor for a given property. In fact, it
is the unique error-free monitor that is resource optimal.

Theorem 4.3.2. Let & be a property, and § € R be an error threshold. Then, Mg is the
unique resource-optimal (0, d)-monitor for ®.

Proof. Let @ = (m, Val). Consider a resource-optimal (0, §)-monitor M = (~, ) for . We
get ~ C ~J thanks to the following implications.

Uy~ Uy = VYVt € X" 1 uit ~ ust (right monotonicity)
= Vt € ¥ y([urt]) = v([uat]) (definition)
= VYVt € X" m(uit) = m(uat) (prompt error 0)
— Uj ~g U (definition)

On the one hand, we have that ~ = ~ by Proposition 4.2.9. On the other hand, we have that
v([u]) = m(u) for all u € ¥* since the prompt-error threshold is 0. As a direct consequence,

M = Msg. [l

Unfortunately, the uniqueness of resource-optimal monitors does not necessarily hold once
we allow erroneous monitor verdicts. For instance, Figure 4.2 shows on the left a property
@ parameterized by x and y, together with its exact-value monitor Mg on the right. In
addition, the figure highlights two ways to make ~¢ coarser to obtain distinct resource-optimal
(x,y)-monitors for .

Proposition 4.3.3. For all x > 0 and y < x there exists a property ® that admits multiple
resource-optimal (x,y)-monitors.

4.3.2 Structure of Resource-optimal Prompt Monitors

Regardless of the uniqueness, one can ask whether making ~4 coarser always yields a resource-
optimal approximate monitor. Here, we answer this question negatively. In particular, Figure 4.3
shows on the left a property @ and on the right a resource-optimal (1, 0)-monitor M = (~,7)
for @ with ab ~ ba, although ab ~ ba.
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& = (m, Lim) where:

ifu=c¢

0 b

3 ifu=c a @ @

6 fu=aoru=ca /(a\i;a )Z
ws 9 i boru=ch @ @c:)
12 if u=cab b\\bl%b )Z
14 ifu=aboru=ba

16 if u = cba @ “ @

19 otherwise

Figure 4.3: A property @ for which no (1, 0)-monitor that Mg refines is resource optimal, and
the witnessing resource-optimal approximate monitor that splits an equivalence class of the
property.

Proposition 4.3.4. There exist a property @ and a (1,0)-monitor M = (~,~) for & such that
for every other (1,0)-monitor M’ = (~',~') we have that ~¢ C ~' implies r(M) < r(M').

We established that the structure of the exact-value monitor does not necessarily provide
insights into finding a resource-optimal approximate monitor. In fact, as we demonstrate
in Figure 4.4, there exist a property such that its resource-optimal (1, 1)-monitor M never
minimizes the resource use r;(M).

Proposition 4.3.5. There exists a property ¢ admitting a (1, 1)-monitor M = (~,~) such
that for all right-monotonic equivalence relations ~ over ¥* and all n € N we have

|25 /| > min{ 1SS0/ | Vug,ug € 557wy R ug = [ D(ur) — Plug)| <1 }

Proof. Let ® = (m,LimSup) be a property from ¥ = {a, b} to N where 7 is defined as follows.

8|u| if ueb*

8lu| — 16k +4  ifu € (btat)* for some k > 1
8lu| — 16k +2  if u € (bTa™) bT for some k > 1
8|u| — 2 ifueat

8lu| — 16k + 10 if u € (a™b")* for some k > 1
8lu| — 16k —4  if u € (aTb*)*ka™ for some k > 1

Let n € N. The key argument is that it is beneficial to put a™ and 0" in the same equivalence
class for minimizing r,, since |?(a") — @(b")| = 2 and since no other trace in ¥=" admits
a value close to either @(a™) or #(b"). However, once we consider traces of length n + 1,
we introduce several values close to ®(a") as well as ¢(b"), but not both at the same time.
Therefore, to minimize the resource use r, ; while maintaining the prompt-error bound of 1,
it becomes beneficial to put @™ and 0" in distinct equivalence classes. O]

4.3.3 Unbounded Precision-resource Tradeoffs for Prompt Monitors

In this subsection, we exhibit properties admitting an infinite sequence of monitors that trade
precision and resource use. First, we investigate the maximal response-time property by
demonstrating how a monitor can save more and more resources by increasing both its prompt
and limit errors.
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Figure 4.4: A resource-optimal (1,1)-monitor for the property @ of Proposition 4.3.5 that
never minimizes its step-wise resource use r,, (black). Attempting to minimize r,, at each step
n results in taking a™ and 0" as equivalent, but breaking the equivalence at step n + 1 as the
prompt-error bound would be violated otherwise (gray).

Example 4.3.6. Let > = {rq,ack,o00} and consider the usual LTL response property P =
O(rqg — Qack). We define CurResp(u) = 0 ifu € P, and CurResp(u) = |u| — |t| otherwise,
where t < w is the longest prefix witht € P. Now, let MaxResp(u) = max;<, CurResp(t)
and define &g = (MaxResp, Lim), which we call the maximal response-time property. Note
that CurResp outputs the current response time for a finite trace, and MaxResp outputs the
maximum response time so far.

Consider the monitor M = (~,~) that counts the response time when there is an open rq,
but only stores an approximation of the maximum when an ack occurs. More explicitly, let ~
and v be such that we have the following: M(u) = 5k + 2 ifu € P, where k € N satisfies
5k < MaxResp(u) < 5(k+1); and M(u) = max{M(t), CurResp(u)} otherwise, wheret < u
is the longest prefix with t € P. We claim that M is a (2, 2)-monitor for ®yr. First, observe
that whenever there is no pending request, i.e., u € P, the monitor has a prompt error of at
most 2 by construction. Indeed, MaxResp(u) € {6k +i | i € {0,1,2,3,4}}. In the case of a
pending request, i.e., uw ¢ P, there is a prompt error only when the monitor's approximation
of the maximum-so-far is not replaced by the current response time. Again, by construction,
we can bound this error by 2. Intuitively, M achieves this approximation by merging in ~
some equivalence classes of ~g, . where there are no pending requests. One can thus verify

that r(M) < r(Mag,)-

The construction described in Example 4.3.6 can be generalized to identify a precision-resource
tradeoff with an infinite hierarchy of approximate monitors.

Theorem 4.3.7. For all § € N, there exists a (d, §)-monitor M for the maximal response-time
property. Furthermore, r(M;) < r(M;) for all i > j, and M is the exact-value monitor.

Proof. Let ®yr = (MaxResp, Lim) be the maximal response-time property as introduced in
Example 4.3.6. Let 0 € N and u € ¥*. If u does not have a pending request, we define
Ms(u) = k(20 + 1) + 0 where k € N satisfies k(25 + 1) < MaxResp(u) < (k+ 1)(26 + 1).
Otherwise, if u has a pending request, we define M(u) = max{M;(t), CurResp(u)} where
t < u is the longest prefix with no pending request. We construct the (6, §)-monitor M
for @yr as in Example 4.3.6. In particular, M, is the exact-value monitor. Indeed, 6 = 0
implies Ms(u) = k = MaxResp(u) when u does not have a pending request, and otherwise
Ms(u) = max;<, CurResp(t) = MaxResp(u) by definition. For all ¢ > j, the monitor M;
partitions the traces with no pending requests into sets of cardinality 2i + 1 while M, does so
using sets of cardinality 25 + 1. Then, the equivalence relation used by M is coarser than
that of M;, and thus r(M;) < r(M;). O
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Note that, except M, the monitors given by Theorem 4.3.7 have non-zero limit error. We
explore in Section 4.4 the properties for which having fewer resources than the exact-value
monitor forces a non-zero limit error. Moreover, we show in Example 4.4.6 that the maximal
response time is one of these properties.

Next, we investigate the server/client property by demonstrating how a monitor can be more
and more precise by increasing its resource use.

Example 4.3.8. Consider a server that receives requests and issues acknowledgments. The
number of simultaneous requests the system can handle is determined at runtime through
a preprocessing computation. We describe a property that, at its core, requires that every
request is acknowledged and the server never has more open requests than it can handle.
In particular, until the server is turned off, the property assigns a value to each finite trace,
denoting the likelihood and criticality of a potential immediate violation.

Let ¥ = {rq,ack,00,0ff} be an alphabet, A € (0,1) be a discount factor, and A > 0 be
an integer denoting the request threshold. For every u € ¥.* we denote by NumReq(u) the
number of pending requests in u. We define the server/client property ®sc = (m,Lim) where
7 is defined as follows.

= 7w(u) = 0 if u contains an occurrence of off,
= 7(s) = NumReq(u)A if NumReq(t) < A for all t < u, and
» 7(u) = NumReq(t) A\l otherwise, where t < u is the shortest with NumReq(t) > A.

Theorem 4.3.9. For every positive integer A and real number 0 < § < A, there exists a
(6,6)-monitor M for the server/client property ®sc. Furthermore, M uses finitely many
resources.

Proof. Let A and § be as above, and consider the set X we define as follows: X = {u €
X | supy,ex- m(uty) — infy,exn- m(uty) > 8}, We argue that X is finite. First, only a finite
number of prefixes of a trace admitting an occurrence of off can belong to X since § > 0
and by definition of @sc. Second, only a finite number of prefixes of a trace in which no off
occurs can belong to X since the discounting forces the value of ®@s¢ to converge to 0. We
construct M such that, if the trace belongs to X, it outputs the value given by the property,
otherwise it outputs the value of the shortest prefix that does not belong to X. In other words,
M does not distinguish traces with the same prefix not belonging to X and thus admits at
most 3| x | X | equivalence classes. O

4.4 Approximate Limit Monitoring

In contrast to Section 4.3 where we tackle the limit monitoring problem indirectly with a
bounded prompt error, here we bound the limit error directly and allow arbitrary prompt error.

Example 4.4.1. Let & = (w, LimInf) be a property over ¥ = {safe,danger,off} such that
m(u) = 2ltl if 4, does not contain off, where t is the longest suffix of u of the form safe*,
and m(u) = |u|ganger Otherwise. Intuitively, ¢ assigns each trace a confidence value while
the system is on and how many times the system was in danger otherwise. We describe an
approximate monitor with unbounded prompt error and bounded but non-zero limit error.
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Let ~ be a right-monotonic equivalence relation and ~ an output function such that M = (~,~)
satisfies the following: M (u) = oo when u has no off and ends with safe, M(u) = 0 when
u has no of f and ends with danger, and M(u) = 9k + 4 otherwise, where k € N satisfies
9k < |u|ganger < 9(k+ 1). Notice that the monitor partitions N into intervals and takes traces
with a “close enough” number of danger’s equivalent as in Example 4.3.6. It is easy to see
that M is a (00, 4)-monitor for ®.

At its core, the limit error threshold of a monitor is a theoretical guarantee since we cannot
compute arbitrary value functions at runtime. Then, as a starting point, we insist that the
monitor has zero limit error, which is a reasonable requirement given that we allow unbounded
prompt error. In this case, the monitoring is still potentially approximate since we allow any
error on finite traces. To talk about properties for which saving resources by allowing prompt
error is not possible, we define the following notion.

Definition 4.4.2 (Resource-intensive limit behavior). A property @ has resource-intensive
limit behavior iff its exact-value monitor Mg is a resource-optimal (6,0)-monitor for any
0 >0.

First, we identify a sufficient condition for a property to be resource-intensive limit behavior.
Then, we present reversible properties and show a subclass of them that satisfy our condition.

4.4.1 Properties with Resource-intensive Limit Behavior

Let & = (m, Val) be a property and recall the equivalence ~: for every u;, us € X* we have
uy ~% ug iff w(ugt) = w(uat) holds for all ¢ € ¥*. To investigate the limit behavior of a
property, we define the following equivalence relation: for every u;,us € 3* we have u; ~% us
iff Val(m(ujw)) = Val(m(uaw)) holds for all w € X¢. Intuitively, traces with indistinguishable
limit behavior are equivalent according to this relation. As a direct consequence of Fact 4.3.1,
the following holds.

Fact 4.4.3. For every property @, we have that ~} C ~%.

However, the converse does not necessarily hold, as we demonstrate with Example 4.4.4 below.
We will show later that, when it holds, the property has resource-intensive limit behavior.

Example 4.4.4. Recall the discounted response property ®pr in Example 4.2.1, and that for
all u,t € ¥*, we have u ~j,__ t iff either (i) both traces have no pending rq or (ii) both have
a rq pending for the same number of steps.

Let u,t € X*. We claim u ~g__ t iff either both traces have a pending request or both do not.
Indeed, if u has a pending request and t does not, then we have ®(u.00*) = 0 but $(t.00*) = 1.
For the other direction, simply observe that if u ~g__ t then ®(u.00”) = ®(t.00”), but the
equality does not hold if u has a pending request and t does not (or vice versa). Having these

*

characterizations at hand, we immediately observe that u ~g__ t implies u ~g__ 1.

Notice that the approximate monitor M for @pg we constructed in Example 4.2.4 follows
exactly the limit behavior of the property. We were able to take advantage of the fact that
~aos 1S COarser than ~z  and design M such that it saves resources by allowing some prompt
error but no limit error. We generalize this observation by showing that we could not have
designed such a monitor if these equivalences had overlapped.
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Theorem 4.4.5. Let ¢ = (w,Val) be a property. If ~5 = ~% then © has resource-intensive
limit behavior.

Proof. Let M = (~,~) be a resource-optimal (¢, 0)-monitor for ¢. Suppose towards contra-
diction that ~} = ~% and My is not resource optimal for @. In particular ~ # ~%. Since
the limit-error threshold is 0, we get ~ C ~7 by the following.

Uy ~up = Yw € X : Val(y([uyw])) = Val(y([usw])) (right-monotonicity)

< Yw € ¥ : Val(r(uyw)) = Val(m(ugw)) (limit error 0)

= uy ~g U (definition)

= Uy~ Uz (hypothesis)

The contradiction is then raised by Proposition 4.2.9 implying that ~ = ~J%. ]

As demonstrated in Example 4.2.4 and discussed above, the discounted response property
does not display resource-intensive limit behavior. We give below two examples of properties
with resource-intensive limit behavior. Let us start with the maximal response-time property.

Example 4.4.6. Consider the maximal response-time property ®yr = (MaxResp, Lim) from
Example 4.3.6. We argue that ~3  and ~g  overlap.

Suppose towards contradiction that there exist u,t € 3* such that u ~g ¢ and u 23 .
Then, there is r € ¥* with Oyr(ur) # Our(tr). If at least one of ur or tr has no pending
request, take the continuation 00 to reach a contradiction to u ~éur - Otherwise, if in both
ur and tr the current response time is smaller than the maximum among granted requests,
then the continuation ack® yields a contradiction. The same continuation covers the case
when both current response times are greater. Finally, assume w.l.o.g. that the current
response time is smaller than the maximum among granted requests in ur and greater in tr.
In this case, ack“ yields a contradiction again because their outputs stay the same as Pygr(ur)
and ®ur(tr), respectively. Therefore, we have u ~j _t, and thus ~3 = and ~g _ overlap.

Next, we describe the average response-time property and argue that it displays resource-
intensive limit behavior.

Example 4.4.7. Let ¥ = {rq,ack,o00} and consider the usual LTL response property
P =0(rq — Qack). Foru € ¥*, we denote by RespTime(u) the total number of letters
between the matching rq-ack pairs in u, and by NumReq(u) the number of valid rq’s in u,
i.e., those that occur after the preceding request is acknowledged. Formally, we define them
as follows. For all u € ¥*, we fix f(u) =1 ifu € P, and f(u) = 0 otherwise. Then, we
define RespTime(u) = >y~ 1 — f(r) and NumReq(u) = |P,| where P, = {t 2w | 3r € £*:
t =r.rq Ap(t) = 1} is the set of valid requests in u. We define the average response-time

property as @ar = (AvgResp, lim inf) where we let AvgResp(u) = %&?%) for all u € ¥*.

We claim that ~3, and ~g  overlap. To show this, one can proceed similarly as in
Example 4.4.6. The cases with no pending requests are similar. When both traces have a
pending request and their output values differ, extend both with ack® to get a contradiction.
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4.4.2 Reversible Properties

The reversible subclass of properties enjoys the ability to move between computation steps
forward and backward deterministically. Such properties received particular interest in the
literature since they can be implemented on hardware without energy dissipation [Lan61, Tof80].
Since it imitates the property, the exact-value monitor of a reversible property can roll back
its computation, if allowed, without needing additional memory. From an automata-theoretic
perspective, reversibility can be seen as the automaton being both forward and backward
deterministic. Algebraically, this is captured by the syntactic monoid being a group.

Definition 4.4.8 (Reversible property). A property ® is reversible iff (3X* /~% - €) is a group.

First, we describe the average ping property—a variant of the average response-time property
where a single ping event captures rq and ack events, and time proceeds through clock tk
events. We then show that this property is reversible.

Example 4.4.9. Let ¥ = {ping, tk,o0}. Let ValidTick(u) = |u|w — |t|tx where t < u is
the longest prefix with no ping, and let NumPing(u) = |u|ping. The average ping property is
defined as Pap = (AvgPing, LimInf) where, for all u € ¥*, we let AvgPing(u) = %m if

NumPing(u) > 0, and AvgPing(u) = —1 otherwise.

We argue that this property is reversible. To see why, first observe for all u,t € ¥* that we
have u ~y  t iff (i) NumPing(u) = NumPing(t) and (ii) ValidTick(u) = ValidTick(t). We
particularly show for every u,t,r € ¥* that if u »3,  t then ur ~g  ir, therefore ~3  yields
a group. Let u,t € X* be such that u =3, t and let v € 3* be arbitrary. Suppose the
condition (i) above does not hold. Since the NumPing values increase monotonically with
every ping, we get NumPing(ur) — NumPing(tr) = NumPing(u) — NumPing(t), which is
non-zero by supposition. If (ii) does not hold, it does not hold for ur and tr either by a similar
reasoning. Hence we have ur g _ tr.

Intuitively, we can backtrack the information on these functions: The value of NumPing is
decremented with each preceding ping, while ValidTick is decremented with each preceding
tk until it hits 0. It means that ~3 , can be seen as an automaton that is both forward and
backward deterministic.

We identify below a well-behaved subclass of reversible properties with resource-intensive limit
behavior.

Theorem 4.4.10. Let @ be a reversible property. If for every u,t € ¥* with u ~4 t there
exists v € X* with ur ~% tr, then @ has resource-intensive limit behavior.

Proof. We show that the reversibility of &, together with the above assumption, implies
~gp = ~g. Note that the inclusion ~}% C ~§ always holds as stated by Fact 4.4.3. Assuming
(X*)~5, - €) is a group, we have uyt ~%5 ust = uy ~% us for all uy, ug,t € X*. The inclusion
~% C ~% holds since having u; =} uy implies for all ¢ € ¥* that u;t »} uot, which in turn
implies u; »§ us by our initial assumption. Finally, by Theorem 4.4.5, we obtain that @ has
resource-intensive limit behavior. ]

Recall the average ping property from Example 4.4.9. It is reversible, as discussed earlier, and
satisfies the condition in Theorem 4.4.10, therefore it has resource-intensive limit behavior.

Finally, we present the maximal ping—a similarly simple variant of the maximal response-time
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property. We demonstrate that this property is not reversible, although it has resource-intensive
limit behavior.

Example 4.4.11. Let ¥ = {ping, o0} and consider the boolean property P = [{ping. Let
CurPing(u) and MaxPing(u) be defined similarly as for the maximal response-time property
in Example 4.3.6. We fix &yp = (MaxPing, Lim) which we call the maximal ping property.
Consider u = ping.oo and t = ping.oo.00. While u % 1, we have ut ~g  tt, therefore
~g,, does not yield a group. Intuitively, this is because we cannot backtrack the information
on the running maximum. However, similarly as for the maximal response-time property in
Example 4.3.6, one can verify that ~3 = = ~g .

Note that a notion of reversibility exists for abstract monitors as well: A monitor M = (~,7)
where ~ yields a group enjoys reversibility. In particular, this ability allows the monitor to
return to a previous computation step without using additional resources and thus consider a
different trace suffix.

4.5 Conclusion

We formalize a framework that supports reasoning about precision-resource tradeoffs for the
approximate and exact monitoring of quantitative properties. Unlike previous results, which
analyze tradeoffs for specific machine models such as register monitors [FHS18, HS21], the
framework presented in this paper studies for the first time an abstract notion of monitors,
independent of the representation model, and separates the monitor errors on finite traces
from those at the limit. These innovations allow us to design and study monitors that keep
the focus on the resources needed for the approximate monitoring of quantitative properties
with a given precision. We provide several examples of when approximate monitoring can save
resources and investigate when it fails to achieve this goal.

An expected future work is to provide a procedure for constructing a concrete (exact or
approximate) monitor from an abstract description. Monitors having finitely many equivalence
classes can be naturally mapped to finite-state automata. For a monitor with infinitely many
equivalence classes, the model must be an infinite-state transition system. Yet, there are
different levels of infinite state space. It can be generated, for example, by a finite collection of
registers [FHS18] or by a pushdown system [DLT13a]. Even when two abstract monitors are
mapped to register automata with the same number of registers, they may differ in the type
of operations used or the run-time needed per observation. It is also worth emphasizing that
saving a single register may save infinitely many resources. Our current results do not provide
such performance, so it is a natural future direction. To this end, we can consider alternative
approaches to evaluate a monitor based on the number of violations of the error threshold.

Another direction is on the relevance of resources through time. Our notion of resource use
covers the number of equivalence classes added at time n, but an assumption that the monitor
can release resources would trigger more possibilities. We can extend our framework to dynamic
abstract monitors in a way that is related to existing works on dynamic programming for model
checking [WYGGO08]. Intuitively, a dynamic abstract monitor keeps track of the equivalence
classes that can be reused in the future and prunes all the others to reduce resource use.
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CHAPTER

Safety and Liveness of Quantitative
Properties and Automata

In this chapter, the following publications were re-used in full:

» Thomas A. Henzinger, Nicolas Mazzocchi, N. Ege Sarac. Quantitative Safety and
Liveness. In Foundations of Software Science and Computation Structures - 26th
International Conference, FoSSaCS 2023.

= Udi Boker, Thomas A. Henzinger, Nicolas Mazzocchi, N. Ege Sarac. Safety and Liveness
of Quantitative Automata. In 34th International Conference on Concurrency Theory,

CONCUR 2023.

= Udi Boker, Thomas A. Henzinger, Nicolas Mazzocchi, N. Ege Sarac. Safety and Liveness
of Quantitative Properties and Automata. In Logical Methods in Computer Science,
LMCS Volume 21 Issue 2 (2025).

5.1 Introduction

Boolean safety and liveness. Safety and liveness are elementary concepts in the semantics
of computation [Lam77]. They can be explained through the thought experiment of a ghost
monitor—an imaginary device that watches an infinite computation trace (word) at runtime,
one observation (letter) at a time, and always maintains the set of possible prediction values
to reflect the satisfaction of a given property. Let @ be a boolean property, meaning that &
divides all infinite traces into those that satisfy @, and those that violate @. After any finite
number of observations, True is a possible prediction value for @ if the observations seen so
far are consistent with an infinite trace that satisfies @, and False is a possible prediction
value for @ if the observations seen so far are consistent with an infinite trace that violates ®.
When True is no possible prediction value, the ghost monitor can reject the hypothesis that
@ is satisfied. The property @ is safe if and only if the ghost monitor can always reject a
violating hypothesis @ after a finite number of observations. Orthogonally, the property @ is
live if and only if the ghost monitor can never reject a hypothesis @ after a finite number of
observations: for all infinite traces, after every finite number of observations, True remains a
possible prediction value for ®.
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The safety-liveness classification of properties is fundamental in verification. In the natural
topology on infinite traces—the “Cantor topology”"—the safety properties are the closed sets,
and the liveness properties are the dense sets [AS85]. For every property @, the location of @
within the Borel hierarchy that is induced by the Cantor topology—the so-called “safety-progress
hierarchy” [CMP93]—indicates the level of difficulty encountered when verifying ®. On the first
level, we find the safety and co-safety properties, the latter being the complements of safety
properties, i.e., the properties whose falsehood (rather than truth) can always be rejected after a
finite number of observations by the ghost monitor. More sophisticated verification techniques
are needed for second-level properties, which are the countable boolean combinations of first-
level properties—the so-called “response” and “persistence” properties [CMP93]. Moreover,
the orthogonality of safety and liveness leads to the following celebrated fact: every property
can be written as the intersection of a safety property and a liveness property [AS85]. This
means that every property @ can be decomposed into two parts: a safety part—which is
amenable to simple verification techniques, such as invariants—and a liveness part—which
requires heavier verification paradigms, such as ranking functions. Dually, there is always a
disjunctive decomposition of @ into co-safety and co-liveness.

Quantitative safety and liveness. So far, we have retold the well-known story of safety and
liveness for boolean properties. A boolean property @ is formalized mathematically as the set
of infinite computation traces that satisfy @, or equivalently, the characteristic function that
maps each infinite trace to a truth value. Quantitative generalizations of the boolean setting
allow us to capture not only correctness properties, but also performance properties [HO13|.
In this chapter we reveal the story of safety and liveness for such quantitative properties, which
are functions from infinite traces to an arbitrary set ID of values. In order to compare values,
we equip the value domain D with a partial order <, and we require (D, <) to be a complete
lattice. The membership problem [CDH10b] for an infinite trace w and a quantitative property
& asks whether @(w) > v for a given threshold value v € D. Correspondingly, in our thought
experiment, the ghost monitor attempts to reject hypotheses of the form @(w) > v, which
cannot be rejected as long as all observations seen so far are consistent with an infinite trace
w with @(w) > v. We will define @ to be a quantitative safety property if and only if every
wrong hypothesis of the form &(w) > v can always be rejected by the ghost monitor after a
finite number of observations, and we will define @ to be a quantitative liveness property if
and only if some wrong hypothesis of the form &(w) > v can never be rejected by the ghost
monitor after any finite number of observations. We note that in the quantitative case, after
every finite number of observations, the set of possible prediction values for @ maintained
by the ghost monitor may be finite or infinite, and in the latter case, it may not contain a
minimal or maximal element.

Examples. Suppose we have four observations: observation rq for “request a resource,” gr
for “grant the resource,” tk for “clock tick,” and oo for “other.” The boolean property Resp
requires that every occurrence of rq in an infinite trace is followed eventually by an occurrence
of gr. The boolean property NoDoubleReq requires that no occurrence of rq is followed by
another rq without some gr in between. The quantitative property MinRespTime maps every
infinite trace to the largest number k such that there are at least k occurrences of tk between
each rqg and the closest subsequent gr. The quantitative property MaxResp Time maps every
infinite trace to the smallest number & such that there are at most k occurrences of tk between
each rq and the closest subsequent gr. The quantitative property AvgResp Time maps every
infinite trace to the lower limit value lim inf of the infinite sequence (v;);>1, where v; is, for the
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first 7 occurrences of tk, the average number of occurrences of tk between rq and the closest
subsequent gr. Note that the values of AvgRespTime can be oo for some computations,
including those for which the value of Resp is True. This highlights that boolean properties
are not embedded in the limit behavior of quantitative properties.

The boolean property Resp is live because every finite observation sequence can be extended
with an occurrence of gr. In fact, Resp is a second-level liveness property (namely, a response
property), because it can be written as a countable intersection of co-safety properties. The
boolean property NoDoubleReq is safe because if it is violated, it will be rejected by the ghost
monitor after a finite number of observations, namely, as soon as the ghost monitor sees a rq
followed by another occurrence of rq without an intervening gr. According to our quantitative
generalization of safety, MinResp Time is a safety property. The ghost monitor always maintains
the minimal number £ of occurrences of tk between any past rq and the closest subsequent gr
seen so far; the set of possible prediction values for MinRespTime is then {0,1,...,k}. Every
hypothesis of the form “the MinResp Time-value is at least v" is rejected by the ghost monitor
as soon as k < v; if such a hypothesis is violated, this will happen after some finite number of
observations. Symmetrically, the quantitative property MaxResp Time is co-safe, because every
wrong hypothesis of the form “the MaxRespTime-value is at most v" will be rejected by the
ghost monitor as soon as the smallest possible prediction value for MaxResp Time, which is
the maximal number of occurrences of tk between any past rq and the closest subsequent gr
seen so far, goes above v. By contrast, the quantitative property AvgRespTime is both live
and co-live because no hypothesis of the form “the AvgResp Time-value is at least v,” nor of
the form “the AvgRespTime-value is at most v,” can ever be rejected by the ghost monitor
after a finite number of observations. All nonnegative real numbers and oo always remain
possible prediction values for AvgRespTime. Note that a ghost monitor that attempts to
reject hypotheses of the form @(w) > v does not need to maintain the entire set of possible
prediction values, but only the sup of the set of possible prediction values, and whether or not
the sup is contained in the set. Dually, updating the inf (and whether it is contained) suffices
to reject hypotheses of the form @(w) < v.

Quantitative safety and liveness in automata. The notions of safety and liveness consider
system properties in full generality: every set of system executions—even the uncomputable
ones—can be seen through the lens of the safety-liveness dichotomy. To bring these notions
more in line with practical requirements, their projections onto formalisms with desirable closure
and decidability properties, such as w-regular languages, have been studied thoroughly in the
boolean setting. For example, [AS87] gives a construction for the safety closure of a Biichi
automaton and shows that Blichi automata are closed under the safety-liveness decomposition.
In turn, [KVO01] describes an efficient model-checking algorithm for Biichi automata that define
safety properties.

Similarly to how boolean automata (e.g., regular and w-regular automata) define classes
of boolean properties amenable to boolean verification, quantitative automata (e.g., limit-
average and discounted-sum automata) define classes of quantitative properties amenable
to quantitative verification. Quantitative automata generalize standard boolean automata
with weighted transitions and a value function that accumulates an infinite sequence of
rational-valued weights into a single real number, a generalization of acceptance conditions of
w-regular automata.

We study the projection of the quantitative safety-liveness dichotomy onto the properties
definable by common quantitative automata. First, we show how certain attributes of
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Figure 5.1: (@) A LimSup-automaton .4 modeling the long-term maximal power consumption
of a device. (b) An Inf-automaton (or a LimSup-automaton) expressing the safety closure of
A. (c) A LimSup-automaton expressing the liveness component of the decomposition of A.

quantitative automata simplify the notions of safety and liveness. Then, we use these
simplifications to study safety and liveness of the classes of quantitative automata with the
value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum [CDH10b]. In
Figure 5.1a, we describe a quantitative automaton using the value function LimSup to express
the long-term maximal power consumption of a device, which is neither safe nor live.

Contributions and overview. First, we focus on quantitative properties in their entire
generality (Sections 5.2 to 5.6). We formally introduce quantitative safety as well as safety
closure, namely the property that increases the value of each trace as little as possible to
achieve safety. Then, we prove that our generalization of the boolean setting preserves classical
desired behaviors. In particular, we show that a quantitative property @ is safe if and only if @
equals its safety closure. Moreover, for totally-ordered value domains, a quantitative property
is safe if and only if for every value v, the set of executions whose value is at least v is safe in
the boolean sense. We demonstrate a close relation between safety properties and continuous
functions with respect to the dual Scott topology of their value domain. Pushing further, we
define discounting properties on metrizable totally-ordered value domains, characterize them
through uniform continuity, and show that they coincide with the conjunction of safety and
co-safety.

We then generalize the safety-progress hierarchy to quantitative properties. We first define
limit properties. For Val € {Inf, Sup, LimInf, LimSup}, the class of Val-properties captures
those for which the value of each infinite trace can be derived by applying the limit function Val
to the infinite sequence of values of finite prefixes. We prove that Inf-properties coincide with
safety, Sup-properties with co-safety, LimInf-properties are suprema of countably many safety
properties, and LimSup-properties infima of countably many co-safety properties. The LimlInf-
properties generalize the boolean persistence properties of [CMP93]; the LimSup-properties
generalize their response properties. For example, AvgRespTime is a LimlInf-property.

By defining quantitative safety and and co-safety via ghost monitors, we not only obtain a
conservative and quantitative generalization of the boolean story, but also open up attractive
frontiers for quantitative semantics, monitoring, and verification. For example, while the
approximation of boolean properties reduces to adding and removing traces to and from a set,
the approximation of quantitative properties offers a rich landscape of possibilities. In fact, we
can approximate the notion of safety itself. Given an error bound «, the quantitative property
& is a-safe if and only if for every value v and every infinite trace w whose value @(w) is
less than v, all possible prediction values for @ are less than v + « after some finite prefix
of w. This means that, for an a-safe property @, the ghost monitor may not reject wrong
hypotheses of the form @(w) > v after a finite number of observations, once the violation
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is below the error bound. We show that every quantitative property that is both a-safe and
[-co-safe, for any finite a and 3, can be monitored arbitrarily precisely by a monitor that uses
only a finite number of states.

We continue with introducing quantitative liveness and co-liveness, and prove that their
relations with quantitative safety and co-safety further preserve the classical boolean facts. In
particular, we show that in every value domain there is a unique property which is both safe
and live, and then as a central result, we provide a safety-liveness decomposition that holds
for every quantitative property, i.e., every quantitative property is the pointwise minimum
of a safety and a liveness property. We also prove that, like for boolean properties, there
exists a liveness-liveness decomposition for every nonunary quantitative property. Moreover,
we provide alternative characterizations of liveness for quantitative properties that have the
ability to express the least upper bound over their values, namely, supremum-closed. For such
properties, we show that a property is live iff for every value v, the set of executions whose
value is at least v is live in the boolean sense.

Second, we focus on quantitative automata (Sections 5.7 to 5.10). In contrast to general
quantitative properties, these automata use functions on the totally-ordered domain of the
real numbers (as opposed to a more general partially-ordered domain). Quantitative automata
also have the restriction that only finitely many weights (those on the automaton transitions)
can contribute to the value of an execution. In this setting, we carry the notion of safety (resp.
co-safety, discounting) from properties to value functions, and show that a value function is
safe (resp. co-safe, discounting) iff every quantitative automaton equipped with this value
function expresses a safety (resp. co-safety, discounting) property. For example, Inf is a safe
value function, and DSum is a discounting value function, therefore both safe and co-safe
thanks to our characterization in the general setting.

We prove that the considered classes of quantitative automata are supremum-closed. Together
with the total-order constraint, this helps us simplify the study of their safety and liveness thanks
to our alternative characterizations from the first part. These simplified characterizations
prove useful for checking safety and liveness of quantitative automata, constructing their safety
closure, and decomposing them into safety and liveness components.

For example, let us recall the quantitative automaton in Figure 5.1a. Since it is supremum-
closed, we can construct its safety closure in PTIME by computing the maximal value it can
achieve from each state. The safety closure of this automaton is shown in Figure 5.1b. For
the value functions Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg, the safety closure
of a given automaton is an Inf-automaton, while for DSum, it is a DSum-automaton.

Evidently, one can check if a quantitative automaton A is safe by checking if it is equivalent to its
safety closure, i.e., if A(w) = SafetyCl(A)(w) for every execution w. This allows for a PSPACE
procedure for checking the safety of Sup-, LimInf-, and LimSup-automata [CDH10b], but not
for LimInfAvg- and LimSupAvg-automata, whose equivalence check is undecidable [DDG™ 10,
CDE*10, HPPR18]. For these cases, we use the special structure of the safety-closure
automaton for reducing safety checking to the problem of whether an automaton expresses
a constant function. We show that the latter problem is PSPACE-complete for LimInfAvg-
and LimSupAvg-automata, by a somewhat involved reduction to the limitedness problem of
distance automata, and obtain an EXPSPACE decision procedure for their safety check.

Thanks to our alternative characterization of liveness, one can check if a quantitative automaton
A is live by checking if its safety closure is universal with respect to its maximal value, i.e., if
SafetyCl(A)(w) > T for every execution w, where T is the supremum over the values of A.
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For all value functions we consider except DSum, the safety closure is an Inf-automaton, which
allows for a PSPACE solution to liveness checking [KLO7, CDH10b], which we show to be
optimal. Yet, it is not applicable for DSum-automata, as the decidability of their universality
check is an open problem. Nonetheless, as we consider only universality with respect to the
maximal value of the automaton, we can reduce the problem again to checking whether an
automaton expresses a constant function, which we show to be in PSPACE for DSum-automata.
This yields a PSPACE-complete solution to the liveness check of DSum-automata.

Finally, we investigate the safety-liveness decomposition for quantitative automata. Recall the
automaton from Figure 5.1a and its safety closure from Figure 5.1b. The liveness component
of the corresponding decomposition is shown in Figure 5.1c. Intuitively, it ignores err and
provides information on the power consumption as if the device never fails. Then, for every
execution w, the value of the original automaton on w is the minimum of the values of its
safety closure and the liveness component on w. Since we identified the value functions Inf
and DSum as safe, their safety-liveness decomposition is trivial. For the classes of automata
we study, we provide PTIME safety-liveness decompositions. Moreover, for deterministic Sup-,
LimInf-, and LimSup-automata, we give alternative PTIME decompositions that preserve
determinism.

We note that our alternative characterizations of safety and liveness of quantitative properties
extend to co-safety and co-liveness. Our results for the specific automata classes are summarized
in Table 5.1 and most are already implemented [CHMS24, CHMS25]. While we focus on
automata that resolve nondeterminism by sup, their duals hold for quantitative co-safety
and co-liveness of automata that resolve nondeterminism by inf, as well as for deterministic
automata. We leave the questions of co-safety and co-liveness for automata that resolve
nondeterminism by sup open.

Related work. To the best of our knowledge, previous definitions of safety and liveness in
nonboolean domains make implicit assumptions about the specification language or implicitly
use boolean safety and liveness [KSZ14, FK18, QSCP22, BV19]. We identify three notable
exceptions — [WHK*13, LDL17, GS22].

In [WHK™13], the authors study a notion of safety for the rational-valued min-plus weighted
automata on finite words. They take a weighted property as v-safe for a given rational v when
for every execution w, if the hypothesis that the value of w is strictly less than v is wrong (i.e.,
its value is at least v), then there is a finite prefix of w to witness it. Then, a weighted property
is safe when it is v-safe for some value v. Given a nondeterministic weighted automaton A
and an integer v, they show that it is undecidable to check whether A is v-safe. By contrast,
our definition quantifies over all values and nonstrict lower-bound hypotheses. Moreover, for
this definition, we show that checking safety of all common classes of quantitative automata
is decidable, even in the presence of nondeterminism.

In [LDL17], the authors present a safety-liveness decomposition on multi-valued truth do-
mains, which are bounded distributive lattices. Their motivation is to provide algorithms
for model-checking properties on multi-valued truth domains. While their definitions admit
a safety-liveness decomposition, our definition of liveness captures strictly fewer properties,
leading to a stronger safety-liveness decomposition theorem. In addition, our definitions also
fit naturally with the definitions of emptiness, equivalence, and inclusion for quantitative
languages [CDH10b].

In [GS22], the authors generalize the framework of [PH18] to nonboolean value domains. Their
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H Inf ‘ Sup, LimInf, LimSup LimInfAvg, LimSupAvg ‘ DSum ‘

Safety c|o§ure o() PTIME 0()

construction Theorems 5.9.6 and 5.9.7
Constant-function PSPACE-complete

check Theorem 5.8.2 and Theorems 5.8.3 and 5.8.8
PSPACE- let ExPSpPACE; PSPACE-hard
Safety check 0() PACE-complete XPSPACE; PACE-har o()
Theorem 5.9.10 Theorem 5.9.12 and Theorem 5.9.9
) PSPACE-complete
Liveness check
Theorem 5.10.2
Safety-live.n-c-:ss o() PTIME 0(1)
decomposition Theorems 5.10.3 to 5.10.5

Table 5.1: The complexity of performing the operations on the left column with respect to
nondeterministic automata with the value function specified on the top row.

definitions do not allow for a safety-liveness decomposition since their notion of safety is too
permissive and their liveness too restrictive. They also do not have a fine-grained classification
of nonsafety properties. We further elaborate on the relationships between the definitions
of [LDL17, GS22] and ours in the relevant sections below.

Our study shows that determining whether a given quantitative automaton expresses a constant
function is key to deciding safety and liveness, in particular for automata classes in which
equivalence or universality checks are undecidable or open. To the best of our knowledge, this
problem has not been studied before.

5.2 Quantitative Properties

Let ¥ = {a,b,...} be a finite alphabet of letters (observations). An infinite (resp. finite) word
(trace) is an infinite (resp. finite) sequence of letters w € 3¢ (resp. u € ¥*). For n € N, we
denote by >" the set of finite words of length n. Given u € ¥* and w € ¥* U X%, we write
u < w (resp. w = w) when u is a strict (resp. nonstrict) prefix of w. We denote by |w| the
length of w € ¥* U X and, given a € 3, by |w|, the number of occurrences of a in w. For
w € XU and 0 < i < |w]|, we denote by wli] the ith letter of w.

A value domain D is a poset. We assume that D is a nontrivial (i.e., L # T) complete lattice.
Whenever appropriate, we write 0 or —oo instead of | for the least element inf D, and 1 or
oo instead of T for the greatest element sup ID. We respectively use the terms minimum and
maximum for the greatest lower bound and the least upper bound of finitely many elements.

A quantitative property is a total function @ : ¥ — I from the set of infinite words to a
value domain. A boolean property P C ¥ is a set of infinite words. We use the boolean
domain B = {0, 1} with 0 < 1 and, in place of P, its characteristic property ®p : >“ — B,
which is defined by ®p(w) = 1 if w € P, and &p(w) = 0 if w ¢ P. When we say just
property, we mean a quantitative one.

Given a property ¢ and a finite word u € ¥*, let Py, = {®(uw) | w € £“}. A property @ is
sup-closed (resp. inf-closed) when for every finite word u € ¥* we have that sup Py, € Py,
(resp. inf Py, € Ps,,).

Given a property ¢ : 3¢ — D and a value v € D, we define ¢, = {w € ¥ | &(w) ~ v}
for ~ € {<, >, £, #}. The top value of a property @ is sup,cs. @(w), which we denote
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by Ts. For all properties &,,P5 on a value domain D and all words w € ¥, we let
min (P, o) (w) = min(Py(w), Po(w)) and max (P, Ps)(w) = max(Py(w), P2(w)). For a
value domain D, the inverse of D is the domain D that contains the same elements as D
but with the ordering reversed. For a property @, we define its complement @ : ¥ — D by
&(w) = b(w) for all w € T¥.

Some properties can be defined as limits of value sequences. A finitary property m: ¥* — D
associates a value with each finite word. A value function Val: D* — D condenses an infinite
sequence of values to a single value. Given a finitary property 7, a value function Val, and a
word w € 3¢, we write Val, -, 7(u) instead of Val(m(ug)m(u1)...), where each u; satisfies
u; < w and |u;| = 1.

5.3 Quantitative Safety

A boolean property P C ¥* is safe in the boolean sense iff for every w ¢ P there is a
prefix u < w with uw’ ¢ P for all w’ € ¥ [AS85], in other words, every wrong membership
hypothesis has a finite witness. Given a property @ : ¥ — D, a trace w € >, and a value
v € D, the quantitative membership problem [CDH10b] asks whether &(w) > v. We define
quantitative safety as follows: the property @ is safe iff every wrong hypothesis of the form
&(w) > v has a finite witness u < w.

Definition 5.3.1 (Safety). A property @ : ¥ — D is safe when for every w € 3* and value
v € D with ®(w) # v, there is a prefix u < w such that sup,,cs. P(uw') ? v.

Let us illustrate this definition with the minimal response-time property.

Example 5.3.2. Let ¥ = {rq,gr,tk,00} and D = N U {oco}. We define the minimal
response-time property @i, through an auxiliary finitary property m.i, that computes the
minimum response time so far. In a finite or infinite trace, an occurrence of rq is granted if it
is followed, later, by a gr, and otherwise it is pending. Let ms:(u) = oo if the finite trace
u contains a pending rq, or no rq, and ms(u) = |u'|t — |u” |k otherwise, where v’ < u is
the longest prefix of u with a pending rq, and v” < u' is the longest prefix of u' without
pending rq. Intuitively, m,s: provides the response time for the last request when all requests
are granted, and co when there is a pending request or no request. Given u € ¥*, taking the
minimum of the values of T,,5; over the prefixes u' < u gives us the minimum response time
so far. Let T (u) = ming <, Tae(u') for all u € 3%, and @i, (w) = limy, <y Tmin(u) for all
w € X¥. The limit always exists because m,;, is nonincreasing.

The minimal response-time property is safe. Let w € ¥* and v € D such that @, (w) < v.
Then, some prefix u < w contains a rq that is granted after v' < v ticks, in which case, no
matter what happens in the future, the minimal response time is guaranteed to be at most v';
that is, SUp,,csw Pmin(uw’) < v’ < v. Recalling from the introduction the ghost monitor that
maintains the sup of possible prediction values for the minimal response-time property, that
value is always Ty, that is, Sup,,csw Pmin(UW') = Tmin(u) for all u € ¥*. Note that in the
case of minimal response time, the sup of possible prediction values is always realizable; that
is, for all uw € ¥*, there exists w € ¥ such that Sup,,csw Pmin(UW') = Ppin (uw).

We first show that our definition of safety generalizes the boolean one.

Proposition 5.3.3. Quantitative safety generalizes boolean safety. In particular, for every
boolean property P C ¥¥, the following statements are equivalent:
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1. P is safe according to the classical definition [AS85].
2. The characteristic property @p is safe.

3. For every w € ¥ and v € B with ®p(w) < v, there exists a prefix u < w such that for
all w' € 3%, we have Pp(uw') < v.

Proof. Recall that (1) means the following: for every w ¢ P there exists u < w such that for
all w" € 3 we have uw’ ¢ P. Expressing the same statement with the characteristic property
&p of P gives us for every w € 3¢ with @p(w) = 0 there exists u < w such that for all
w' € X% we have @p(uw’) = 0. In particular, since B = {0,1} and 0 < 1, we have for every
w € X% with @p(w) < 1 there exists u < w such that for all w’ € ¥ we have @p(uw') < 1.
Moreover, since there is no w € ¥¢ with @p(w) < 0, we get the equivalence between (1)
and (3). Now, observe that for every u € ¥*, we have @p(uw') < 1 for all w' € ¢ iff
SUD,rexe Pp(uw’) < 1, simply because the domain B is a finite total order. Therefore, (2)
and (3) are equivalent as well. O

Next, we show that safety properties are closed under pairwise min and max.

Proposition 5.3.4. For every value domain D, the set of safety properties over D is closed
under min and max.

Proof. First, consider the two safety properties @;, @, and let @ be their pairwise minimum,
i.e., (w) = min(P;(w), Po(w)) for all w € X*. Suppose towards contradiction that @ is
not safe, i.e., for some w € ¥* and v € D such that &(w) #? v and sup,,cy. P(vw’) > v
for all u < w. Observe that ®(w) # v implies &;(w) 2 v or Po(w) # v. We assume
without loss of generality that @;(w) # v holds. Thanks to the safety of @;, there exists
u' < w such that sup,cyw @1(w'w') 2 v. Since @1 (v'w') > &(uw'w’) for all w' € £, we have
that sup,cse @1 (Ww') > sup,yese @(w'w’) > v. This implies that sup,,csw @1 (W'w') > v,
which yields a contradiction.

Now, consider the two safety properties @1, @, and let @ be their pairwise maximum, i.e.,
&(w) = max(P;(w), P2(w)) for all w € X“. Suppose towards contradiction that @ is not
safe, i.e., for some w € ¥ and v € D, we have @(w) # v and sup,,csw @(uw’) > v for all
u < w. Due to safety of both @, and &@,, we get for each i € {1,2} the following: for all
w e X and v € D if @;(w) 2 v there is u; < w such that sup,cyw P(u;w') 7 v. Combining
the two statements, we get for all w € ¥ and v € D if max(P;(w),Po(w)) Z# v, then
there exists u < w such that max(sup,,cse @1(uw’), sup, esw P2(uw’)) 2 v. In particular,
max (Sup,ycye P1(uw’), sUpeyw Po(uw’)) # v holds since max(Pq(w), P2(w)) = P(w) # v.
Since sup(X UY) = max(sup X,supY) for all X, Y C D, we get

sup (max (P (uw'), Po(uw'))) = max ( sup @1 (uw'), sup @2(uw’)> :

w/ €X¥ w’ €W w/'eX¥

Consequently,
sup max (P (uw'), Po(uw')) = sup P(uw') Z v,

w'eXw w'exw

thus, a contradiction. O

We now generalize the notion of safety closure and present an operation that makes a property
safe by increasing the value of each trace as little as possible.
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Definition 5.3.5 (Safety closure). The safety closure of a property & is the property
SafetyCl(P) defined by SafetyCl(P)(w) = inf, <, sUp,,esw @(uw’) for all w € X¥.

We can say the following about the safety closure operation.

Theorem 5.3.6. For every property @ : ¥ — D, the following statements hold.

~

W

N

(&)

SafetyCl(P) is safe.

SafetyCl(P)(w) > P(w) for all w € .

SafetyCl(P)(w) = SafetyCl(SafetyCl(P))(w) for all w € ¥.
& is safe iff &(w) = SafetyCl(P)(w) for all w € ¥,

For every safety property ¥ : ¥* — D, if ®(w) < ¥(w) for all w € ¥, then
SafetyCl(P)(w) < ¥(w) for all w € ¥¥.

Proof. We first prove that sup,cyw SafetyCl(P)(uw’) < sup, ey @(uw’) for all uw € ¥*, in
other words, sup,,csw infy <yw SUP,rese P(u'w”) < sup, esw @(uw’) for all u € X*. This
will be useful for the proofs of the first and the third items above.

1.

Y @ sup,esw @(uw’) € {suprese @(Ww") | v < u}
= Yu : sup, ey P(uw’) > inf <, sup,rese @(u'w”)
1,030

= Vu : sup,exe P(uw’) > sup,csw infy <y, Suprese (Ww”) (1)

Y, t 2 Sup, e @(uw’) > sup,mese (utw”)
= Y : sup, esw P(uw’) > sup,ese infycy suprese @(utw”) (1)

() A (I) = Yu:sup,ese P(uw') > sup,ese infy <uw SUPrese @(w/w”)

Now, we prove that SafetyCl(®) is safe. Suppose SafetyCl(®P) is not safe, i.e., there
exist w and v for which SafetyCl(®)(w) # v and sup,, ¢y SafetyCl(P)(uw') > v for
all w < w. As a direct consequence of the fact that sup,, 5. SafetyCl(P)(uw') <
SUD,rexe P(uw’) for all u € ¥*, we have that inf, -, sup, cse @(uw’) > v. It implies
that SafetyCl(®)(w) > v, which contradicts the hypothesis SafetyCl(P)(w) # wv.
Hence SafetyCl(®) is safe.

Next, we prove that SafetyCl(®)(w) > ®(w) for all w € ¥¥. Given u € X*, let
Py, = {P(uw') | w' € £}, Observe that SafetyCl(P)(w) = limy, <, (sup Ps,,) for
all w € ¥¥. Moreover, ®(w) € Pgp,, for each u < w, and thus sup Py, > @(w) for
each u < w, which implies lim,,,(sup Pp,) > @(w), since the sequence of suprema is
nonincreasing.

Next, we prove that SafetyCl(®)(w) = SafetyCl(SafetyCl(P))(w) for all w € X¥.
Recall from the first paragraph that sup,, 5w SafetyCl(?)(uw') < sup,eso P(uw’)
for all u € ¥*. So, for every w € ¥¢, we have inf, -, sup,,cs. SafetyCl(P)(uw') <
inf, <y SUP,/esw @(uw’) and thus SafetyCl(SafetyCl(P))(w) < SafetyCl(P)(w) for all
w € X, Since we also have SafetyCl(SafetyCl(P))(w) > SafetyCl(P)(w), then the
equality holds for all w € »¢.
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4. Next, we prove that @ is safe iff &(w) = SafetyCl(®)(w) for all w € ¥*. The right-
to-left implication follows from the fact that SafetyCl(®) is safe, as proved above in
item (1). Now, assume @ is safe, i.e., for all w € ¥¥ and v € D if ®(w) # v then
there exists u < w with sup,, 5. @(uw') # v. Suppose towards contradiction that
for some = € ¥ we have @(x) < SafetyCl(P)(x) = inf,~, Sup,ese P(uw’). Let
v = inf, 4, SUp,ese P(uw’). Since @ is safe and @(z) 2 v, there exists u' < = such
that sup,,csw @(W'w') 2 v. Observe that for all z € X and u; < uy < = we have
SUD,rexe P(uaw") < SUpyesw P(u19g), i.e., the supremum is nonincreasing with longer
prefixes. Therefore, we have inf, -, sup, cyw (uw’) < sup,ese @(w'w'). But since
SUD,sexwe P(u'w’) 2 v, we get a contradiction.

5. Finally, we prove that SafetyCl(®) is the least safety property that bounds @ from
above. Assume there exists a safety property ¥ such that &(w) < ¥(w) holds for
all w € X“. Then, for every infinite word w € ¥ and all of its prefixes u < w
we have &(uw') < ¥(uw') for all w' € 3. It implies for every w € > and every
u < w, we have sup,,csw @(uw’) < supese ¥(uw'). Then, for every w € ¥¢, we
have inf, -y, SUD,ese P(uw') < inf, .y, SUpP, exw ¥(uw'). By definition, this is the same
as SafetyCl(®)(w) < SafetyCl(¥)(w) for all w € ¥*. Moreover, since ¥ is safe, it is
equivalent to its safety closure as we proved above, and thus SafetyCl(®)(w) < ¥(w)
for all w € ¢, 0

We note that a property’s safety remains unaffected by the top value of its domain.

Remark 5.3.7. Consider a property @ : ¥* — D. If @ is safe, it remains safe after removing
(resp. adding) values greater than T4 from D (resp. to D). In particular, consider the value
domains Dg ={v €D |v < Tg} and D =DU{T'} withv < T' for allv € D. It is easy to
see that if @ is safe, then ¢, : ¥ — Dg and @, : ¥ — I where &(w) = @1 (w) = Po(w)
for all w € ¥ are also safe.

Recall that a safety property allows rejecting wrong lower-bound hypotheses with a finite
witness by assigning a tight upper bound to each trace. We define co-safety properties
symmetrically: a property @ is co-safe iff every wrong hypothesis of the form ¢(w) < v has a
finite witness u < w.

Definition 5.3.8 (Co-safety). A property & : ¥¥ — D is co-safe when for every w € ¥* and
value v € D with ®(w) £ v, there exists a prefix u < w such that inf,, ey @(uw') £ v.

Definition 5.3.9 (Co-safety closure). The co-safety closure of a property @ is the property
CoSafetyCl(®)(w) defined by CoSafetyCl(P)(w) = sup,,_,, infyese @(uw’) for all w € 3¢,
It is easy to see that safety and co-safety are duals in the following sense.

Theorem 5.3.10. A property @ : ¥ — D is safe iff @ is co-safe.

Thanks to Theorem 5.3.10, the duals of the results above for safety properties and the

safety closure operation hold for co-safety properties and the co-safety closure operation. To
demonstrate, let us define and investigate the maximal response-time property.

Example 5.3.11. Let ¥ = {rq,gr,tk,00} and D = NU {oc}. We define the maximal
response-time property ®... through an auxiliary property that computes the current response
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time for each finite trace. In particular, for all u € ¥*, let wey(u) = |ulek — ||k, where
u' = u is the longest prefix of u without pending rq. Then, let Tyay(u) = Max, <y Teurr (')
for all w € ¥*, and @y (w) = limy <y, Teur(w) for all w € X%, The limit always exists because
Tmax IS Nondecreasing. Note the contrast between ., and 7,5 from Theorem 5.3.2. While
Teurr takes an optimistic view of the future and assumes the gr will follow immediately, s
takes a pessimistic view and assumes the gr will never follow. Now, let w € >* and v € D.
If the maximal response time of w is strictly greater than v, then for some prefix u < w
the current response time is strictly greater than v also, which means that, no matter what
happens in the future, the maximal response time is strictly greater than v after observing .
Therefore, @, is co-safe. By a similar reasoning, the sequence of greatest lower bounds of
possible prediction values over the prefixes converges to the property value. In other words, we
have sup,,_,, inf/exne Prax (V') = Puax(w) for all w € X, thus @y equals its co-safety
closure. Now, consider the property ®,,.x, which maps every trace to the same value as D,
on a value domain where the order is reversed. It is easy to see that ®n.x is safe. Finally, recall
the ghost monitor from the introduction, which maintains the infimum of possible prediction
values for the maximal response-time property. Since the maximal response-time property
is inf-closed, the output of the ghost monitor after every prefix is realizable by some future
continuation, and that output is Tyayx(u) = MaxX, <, Teur(u') for all u € ¥

Although minimal and maximal response-time properties are sup- and inf-closed, let us note
that safety and co-safety are independent of sup- and inf-closedness.

Proposition 5.3.12. There is a property @ that is safe and co-safe but neither sup- nor
inf-closed.

Proof. Let ¥ = {a,b} be an alphabet and D = {v;,ve, L, T} be a lattice where v; and v,
are incomparable. Let ®(w) = vy if a < w and @(w) = vy if b < w. The property @ is safe
and co-safe because after observing the first letter, we know the value of the infinite word.
However, it is not sup-closed since sup,,csw @(w) = T but no infinite word has the value T.
Similarly, it is not inf-closed either. O

5.3.1 Threshold Safety

In this section, we define threshold safety to connect the boolean and the quantitative settings.
It turns out that quantitative safety and threshold safety coincide on totally-ordered value
domains.

Definition 5.3.13 (Threshold safety). A property @ : ¥“ — D is threshold safe when for
every v € D the boolean property ¢, is safe (and thus ®y, is co-safe). Equivalently, for
every w € ¥ and v € D if ®(w) # v then there exists u < w such that for all w' € ¥ we
have ®(uw') # v.

Definition 5.3.14 (Threshold co-safety). A property @ : ¥ — ID is threshold co-safe when
for every v € D the boolean property @, is co-safe (and thus @<, is safe). Equivalently, for
every w € ¥ and v € D if ®(w) £ v then there exists u < w such that for all w' € ¥¥ we
have ®(uw') £ v.

In general, quantitative safety implies threshold safety, but the converse need not hold with
respect to partially-ordered value domains.
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Proposition 5.3.15. Every safety (resp. co-safety) property is threshold safe (resp. threshold
co-safe), but not vice versa.

Proof. Consider a property @ over the value domain ID. Observe that for all v € ¥X* and all
v € D, we have that sup,,cs. @(uw') 2 v implies @(uw) # v for all w € ¥¥. If @ is safe
then, by definition, for every w € 3¢ and value v € D if ®(w) # v, there is a prefix u < w
such that sup,, ¢y @(uw') 7 v. Thanks to the previous observation, for every w € ¥“ and
value v € D if ®(w) # v then there exists u < w such that ®(uvw’) 2 v for all w’ € ¥¥.
Hence @ is threshold safe. Proving that co-safety implies threshold co-safety can be done
similarly.

Consider the value domain D = [0, 1] U {z} where z is such that 0 < x and = < 1, but it is
incomparable with all v € (0, 1), while within [0, 1] there is the standard order. Let ¢ be a
property defined over ¥ = {a, b} as follows: ¢(w) = z if w = a¥, P(w) = 271Vl if w € L*p*,
and ¢(w) = 0 otherwise.

First, we show that @ is threshold safe. Let w € 3 and v € D. If v = z, then &5, = {a“, 1"},
which is safe. If v = 0, then @5, = X, which is safe as well. Otherwise, if v € (0, 1], there
exists n € N such that the boolean property @, contains exactly the words w’ such that
|w'|, < n, which is again safe. Therefore @ is threshold safe.

Now, we show that @ is not safe. To witness, let w = a* and v € (0,1). Observe that
&(w) # v. Moreover, for every prefix u < w, there exist continuations w; = a* and wy = b
such that @(uw;) = x and @(uwy) € (0,1). Then, it is easy to see that for every prefix u < w
we have sup,csw P(uw’) =1 > v. Therefore, @ is not safe. Moreover, its complement D is
threshold co-safe but not co-safe. O

While safety and threshold safety can differ when considering a single fixed threshold, the two
definitions are equivalent on totally-ordered domains since both inherently quantify over all
thresholds.

Theorem 5.3.16. Let D be a totally-ordered value domain. A property @ : ¥ — DD is safe
(resp. co-safe) iff it is threshold safe (resp. threshold co-safe).

Proof. We prove only the safety case; the co-safety case follows by duality. Consider a property
@ : ¥¥ — D where D is totally ordered. By Theorem 5.3.15, if @ is safe then it is also
threshold safe.

For the other direction, having that @ is not safe, i.e., for some w; € ¥ and v; € D for which
&(wy) < vy, and every prefix u; < wy satisfies that sup,,cse P(uw) > vy, we exhibit wy € X
and vy € D for which @(ws) < vy, and every prefix us < we admits a continuation w € ¢
such that @(usw) > vy. We proceed case by case depending on how sup,,cs. @(ujw) > vy
holds.

= Suppose sup,ese P(ugw) > vy for all uy < wy. Then, let wy = wy and vy = vy,
and observe that the claim holds since the supremum is either realizable by an infinite
continuation or it can be approximated arbitrarily closely.

= Suppose sup,,csw @(uyw) = vy for some u; < wy, and for every finite continuation
u; =< r < w; there exists an infinite continuation w’ € ¥* such that ®(rw') = v;.
Then, let wy = wy and v, = vy, and observe that the claim holds since the supremum is
realizable by some infinite continuation.
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= Suppose sup,,csw @(ugw) = vy for some u; < wy, and for some finite continuation
u; = r < wy, every infinite continuation w’ € ¥* satisfies &(rw') < v;. Let 7 be the
shortest finite continuation for which @(rw’) < v; for all w’ € ¥“. Since (w;) < vy
and D is totally ordered, there exists vy such that &(w;) < vy < v;. We recall that,
from the nonsafety of @, all prefixes u; < wy satisfy sup, ey P(ugw) > v1 > vy, Then,
let wy = wy and @(w;) < vy < vy, and observe that the claim holds since the supremum
can be approximated arbitrarily closely. O

Finally, we also show that the two definitions coincide for sup-closed properties.

Proposition 5.3.17. Let ¢ : ¥ — D be a sup-closed (resp. inf-closed) property. Then, ¢
is safe (resp. co-safe) iff it is threshold safe (resp. threshold co-safe).

Proof. We prove only the safety case; the co-safety case follows by duality. Consider a
sup-closed property @ : 3 — ID. By Theorem 5.3.15, if @ is safe then it is also threshold
safe. For the other direction, suppose @ is threshold safe. Let w € ¥X* and v € D be such
that @(w) # v. Then, there exists u < w such that ®(uw’) # v for all w’ € ¥*. Since
@ is sup-closed, there exists W € X with @(u) = sup, ey P(uw’). Therefore, we have
SUD,exw P(uw') # v, implying that @ is safe. ]

5.3.2 Continuity and Discounting

We move next to the relation between safety and continuity. We recall some standard
definitions; more about them can be found in textbooks, e.g., [HR86, GG99, GHK™03].

A topology of a set X can be defined to be its collection 7 of open subsets, and the pair
(X, 7) stands for a topological space. It is metrizable when there exists a distance function
(metric) d on X such that the topology induced by d on X is .

Given a topological space (X, 7), aset S C X is closed in (X, 7) iff its complement S = X'\ S
is open in (X, 7). Moreover, given a set S C X, the topological closure TopolCI(S) of S is
the smallest closed set that contains S, and the topological interior Topolint(S) of S is the
greatest open set that is contained in S.

The Cantor space of infinite words is the set X with the metric p : ¥ x 3 — [0, 1] such that
p(w, w) = 0 and p(w,w') = 271" where u € ¥* is the longest common prefix of w,w’ € ¥
with w # w’. Accordingly, a set P C 3¢ is open in the Cantor space of infinite words iff for
every w € P there exists a prefix u < w such that u¥¥ C P.

Let D be a value domain and S C D a subset. Let 1S ={y e D |dz € 5: 2 <y} and
1S={yeD|Fxe s y<a}

A set S C D is upward directed iff for every x,y € S there is z € S such that x < z and
y <z Aset S CDis Scott open iff (i) S =15, and (i) supV € S implies VNS # () for all
upward-directed sets V C ID. A set S C ID is Scott closed iff its complement S is Scott open.
The Scott topology on a complete lattice I is the topology induced by the Scott open sets of
D. Considering the Scott topology on D, we have TopolCl({v}) = | {v} for every v € D.

The dual Scott topology on I is the Scott topology on the inverse D of ID. An equivalent
definition can be obtained by using the duals of above notions as follows. A set S C D is
downward directed iff for every x,y € S there is z € S such that z < z and z < y. A
set S C D is dual Scott open iff (i) S = ]S, and (ii) inf V' € S implies VN .S # () for all
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downward-directed sets V C ID. A set S C D is dual Scott closed iff its complement S is
dual Scott open. Then, the dual Scott topology on a complete lattice ID is the topology
induced by the dual Scott open sets of ID. Considering the dual Scott topology on ID, we have
TopolCl({v}) = 1{v} for every v € D.

Consider a totally-ordered value domain . For each element v € D, let L, = {v' €
D|v <wv}and R, ={v' € D| v <v'}. The order topology on D is generated by the set
{L, |veD}U{R, | v e D}. Moreover, the left order topology (resp. right order topology)
is generated by the set {L, | v € D} (resp. {R, | v € D}).

For a given property @ : 3 — D and a set V' C D of values, the preimage of V on & is
defined as @~ 1(V) = {w € ¥ | &(w) € V'}. A property ® : ¥ — D on a topological space
D is continuous when for every open subset V' C D the preimage #~1(V/) C X“ is open.

In [HS21], a property @ is defined as co-continuous when @(w) = lim, <, SUp,, 5w C(uw’)
and as continuous when ®(w) = lim,,, inf,exe @(uw’) for all w € ¢, extending the
standard definitions of upper semicontinuity and lower semicontinuity for functions on extended
reals to functions from infinite words to complete lattices. Co-continuity and continuity
respectively coincide with safety and co-safety properties. This characterization holds because
each definition is equivalent to a property expressing the same function as its corresponding
closure (see Theorem 5.3.6). We complete the picture by providing a purely topological
characterization of safety and co-safety properties in terms of their continuity.

Theorem 5.3.18. Consider a property @ : ¥ — . If ¢ is safe (resp. co-safe), then it is
continuous with respect to the dual Scott topology (resp. Scott topology) on D.

Proof. Let @ : ¥X¥ — D be a property. We prove the statement for safety properties. The
case of co-safety is dual.

Assume @ is safe. Let S C I be an open set and suppose towards contradiction that
@~1(S) C 3¢ is not open. There exists a word w € ®~1(9) such that for every prefix u < w
there exists a continuation w’ such that uw’ ¢ ®~1(5). It implies that for each such prefix
u, we have sup,, ey P(uw’) ¢ S. For each i > 1, let u; < w be of length ¢, and consider
the set V' = {sup, cxe @(w;w') | u; < w}. Observe that V' is a downward-directed set. If
inf V' € S, since S is open, we have VN .S # (), i.e., sup,,ese P(w;w') € S for some u; < w.
Then, we have @(uw') € S for all w' € ¥¢ since S = ]S, which contradicts the supposition
that #71(S) C X“ is not open. If inf V' ¢ S, then observe that inf V = SafetyCl(®)(w).
Moreover, SafetyCl(®)(w) = ®(w) since P is safe, which implies inf V' € S since ¢(w) € S,
which is a contradiction. Therefore, @_1(5) C X is open, and thus @ is continuous. ]

The converse does not hold in general essentially due to the fact that the safety closure values
may be unrealizable.

Proposition 5.3.19. There exists a property @ : ¥ — D that is continuous with respect to
the dual Scott topology (resp. Scott topology) on D but not safe (resp. co-safe).

Proof. Let us recall the property @ from the proof of Theorem 5.3.15: Consider the value
domain D = [0, 1] U {} where z is such that 0 < z and = < 1, but it is incomparable with
all v € (0,1), while within [0, 1] there is the standard order. Let ¢ be a property defined
over ¥ = {a, b} as follows: ®(w) =z if w = a*, ®(w) = 271"l if w € L*b*, and D(w) =0
otherwise. We showed in the proof of Theorem 5.3.15 that @ is not safe. Below, we show
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that @ is continuous with respect to the dual Scott topology on ID. One can symmetrically
show that @ is continuous with respect to the Scott topology on D but not co-safe.

Let us identify the open subsets of ID. The sets () and ID are open in D as they are open in
any topology. Moreover, notice that every open subset containing 1 is exactly the entire value
domain due to the downward closure requirement. Now, consider a subset S C D with 1 ¢ S.
We argue that if S is open, it is either of the form [0,7) or [0,7) U {z} for some r € (0, 1].

First, consider the case when = ¢ S. Notice that again due to the downward closure
requirement the set S must contain an interval I C [0, 1] with 0 € I. Moreover, the interval
I cannot contain its upper bound. Suppose towards contradiction that I = [0, 7] for some
r € [0,1]. If r =1, then S = [0, 1], which is not open because it violates the downward closure
requirement since x ¢ S. If r < 1, then S = [0, 7], which is not open because V' = (r,1] is a
downward-directed set with inf V =1 € S but VNS = (. Therefore, if z ¢ S, then S is of
the form [0, ) for some r € (0, 1]. For the case of x € S, notice that the inclusion of z in S
does not affect the downward closure requirement. Moreover, the only downward-directed sets
whose infimum is = are {x} and {z, 1}, and their intersection with S is not empty as = € S.
Therefore, if x € S, then S is of the form [0,7) U {z} for some r € (0, 1].

Now, let us show that @ is continuous. If S = @ (resp. D), then we have &~1(S) = ) (resp.
¥*), which is evidently open in the Cantor topology of ¥*. Suppose S = [0,r) for some
r € (0,1]. Let k, = min{k € N | 27% < r}. Then, observe that #71(.9) is exactly the set of
infinite words w where w contains at least k, occurrences of ¢ and at least one b, which is
an intersection of two open sets, and thus open. Finally, suppose S = [0,7) U {x} for some
r € (0,1]. Let k, be as above, and notice that #~!(S) is exactly the set of infinite words w
where w contains at least k, occurrences of a, which is open. Therefore, @ is continuous. [

Next, we examine the relation between threshold safety and continuity with respect to the
dual Scott topology. We show in particular that continuity implies threshold safety.

Theorem 5.3.20. Consider a property @ : ¥ — . If @ is continuous with respect to the
dual Scott topology (resp. Scott topology) on D, then it is threshold safe (resp. threshold
co-safe).

Proof. Let @ : ¥X¥ — D be a property. We prove the statement for safety properties. The
case of co-safety is dual.

Assume @ is continuous, i.e., for every open set S C ID the preimage @‘1(5) is open. We
want to show that @ is threshold safe, i.e., ®», = {w € ¥¥ | &(w) # v} is co-safe in the
boolean sense for every v € D. Let v € D and notice that &, = &' (1{v}). Since the set
W is open in D and @ is continuous, its preimage @y, is open in ¥¢, i.e., co-safe in the
boolean sense. Therefore, @ is threshold safe. O]

Moreover, we establish that the inclusion is strict: there is a threshold safety property that is
not continuous with respect to the dual Scott topology.

Proposition 5.3.21. There exists a property @ : ¥* — D that is threshold safe (resp.

threshold co-safe) but not continuous with respect to the dual Scott topology (resp. Scott
topology) on D.
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Proof. Let 3 = {a,b} be a finite alphabet. Consider the value domain D = ¥ U {L, T}
where for every z € D we have T > z and z > L, but the elements from >* are incomparable
with each other. Let @ : ¥ — ID be such that &(w) = w for all w € ¥¥.

We show that @ is threshold safe, i.e., for every w € 3 and every v € D with &(w) # v there
exists u < w such that for every w’ € ¥* we have ®(uw') 2 v. Let w € ¥ and v € D. If
v =T, the finite witness for @(w) # T is the empty word since no infinite word has the value
T. If v < T, we have ®(w) 2 v iff v € 3 and w # v since @ is the identity function on ¢
and the elements from 3 are incomparable. Observe that two infinite words are distinct iff
there is a finite word that is a prefix of one and not the other. Then, such a prefix of w is the
finite witness for @(w) # v. Therefore, @ is threshold safe.

We show that @ is not continuous with respect to the dual Scott topology on D. Let P C ¥
be a set of infinite words. First, we argue that S = P U {L} is open in D. The set S is
downward closed because for every w € P the only element smaller than w is L, which is in
S. Let V be a downward-directed subset of D. If L € V, then inf V = 1 € S and we have
VNS #0D. If L&V, then V contains at most one element from X“ (otherwise we would
have L € V since V' is downward directed). If V' contains no elements from >¢, then it is
either ) or {T}, and thus inf V' =T ¢ S. If V contains some element w from X, we have
inf V' = w. Moreover, if inf V' € S, then clearly w € S and thus V N S # (.

Now, let P = >*a“. As we proved above, the set S = P U {L} is open in D. However, its
preimage 45_1(5) is exactly the set P, which is not open in 3. Therefore, @ is not continuous.

The property @ above and the same arguments also cover the case of co-safety. O

An immediate result of Theorems 5.3.18 and 5.3.20 is that whenever safety and threshold
safety coincide, they also coincide with continuity with respect to the dual Scott topology. In
particular, thanks to Theorem 5.3.17, we obtain the following.

Corollary 5.3.22. Consider a sup-closed (resp. inf-closed) property @ : ¥ — ID. Then, ® is
safe (resp. co-safe) iff it is continuous with respect to the dual Scott topology (resp. Scott
topology) on D.

Moreover, for totally-ordered value domains D), it is well known that a property is continuous
with respect to the dual Scott topology (resp. Scott topology) on I iff it is continuous with
respect to the left order topology (resp. right order topology) on D, which coincides with
upper semicontinuity (resp. lower semicontinuity) when D = R U {—o00, +00}. Then, thanks
to Theorem 5.3.16, we get the following.

Corollary 5.3.23. Let D be a totally-ordered value domain. A property @ : > — D is safe
(resp. co-safe) iff it is continuous with respect to the left order topology (resp. right order
topology) on D.

Finally, since a property is continuous with respect to the order topology on I iff it is continuous
with respect to both left and right order topologies on D, we immediately obtain the following.

Corollary 5.3.24. Let D be a totally-ordered value domain. A property & : 3* — D is safe
and co-safe iff it is continuous with respect to the order topology on .

Now, we shift our focus to totally-ordered value domains whose order topology is metrizable.
We provide a general definition of discounting properties on such domains.
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Definition 5.3.25 (Discounting). Let D be a totally-ordered value domain for which the
order topology is metrizable with a metric d. A property @ : ¥ — D is discounting when
for every ¢ > 0 there exists n € N such that for every u € X" and w,w’ € ¥X“ we have
d(P(uw),P(uw')) < e.

Intuitively, a property is discounting when the range of potential values for every word converges
to a singleton. As an example, consider the following discounted safety property: Given a
boolean safety property P, let @ be a quantitative property such that ®(w) =1 if w € P, and
d(w) = 271"l if w ¢ P, where u < w is the shortest bad prefix of w for P. We remark that
our definition captures the previous definitions of discounting given in [{AHMO03, ABK14].

Remark 5.3.26. Notice that the definition of discounting coincides with uniform continuity.
Since ¥* equipped with Cantor distance is a compact space, every continuous property is also
uniformly continuous by Heine-Cantor theorem, and thus discounting.

As an immediate consequence, we obtain the following.

Corollary 5.3.27. Let D be a totally-ordered value domain for which the order topology is
metrizable. A property @ : ¥ — D is safe and co-safe iff it is discounting.

Let P C ¥ be a boolean property. Recall that TopolCI(P) is the smallest boolean safety
property that contains P, and Topollnt(P) of P is the greatest boolean co-safety property that
is contained in P. To conclude this subsection, we show the connection between the quantitative
safety closure (resp. co-safety closure) and the topological closure (resp. topological interior)
through sup-closedness (resp. inf-closedness). The sup-closedness assumption makes the
quantitative safety closure values realizable. This guarantees that for every value v, every
word whose safety closure value is at least v belongs to the topological closure of the set of
words whose property values are at least v. Similarly, the inf-closedness assumption helps in
the case of co-safety and topological interior.

Theorem 5.3.28. Consider a property @ : ¥ — D and a threshold v € D. If ¢ is sup-
closed, then (SafetyCl(®))s, = TopolCl(P,). If D is inf-closed, then (CoSafetyCl(P))<, =
TopolInt(P<,).

Proof. First, we observe that for all u € X*, if sup,cy. @(uw’) # v then for every
w € 3¢ we have ®(uw) # v. Next, we show that TopolCl(P,) C (SafetyCl(P))s,.
Suppose towards contradiction that there exists w € TopolCl(P,) \ (SafetyCl(P))s,, that is,
SafetyCl(®)(w) 2 v and w € TopolCl(P,). This means that (i) inf,~,, sup,cx. P(uw’) 2
v, and (ii) for every prefix u < w there exists w’ € ¥* such that ®(uw’) > v. By the above
observation, (i) implies that there exists a prefix v’ < w such that for all w” € ¥ we have

&(u'w") # v, which contradicts (ii).
Now, we show that if @ is sup-closed then (SafetyCl(P))>, C TopolCl(P>,). Suppose towards

contradiction that there exists w € (SafetyCl(P))s,\ TopolCl(P>,), thatis, SafetyCl(P)(w) >
v and w ¢ TopolCl(®>,). By the duality between closure and interior, we have w €
TopolInt(®y,). Then, (i) inf, <, SUp, e P(uw’) > v, and (ii) there exists v’ < w such that
for all w” € ¥ we have @(uv'w”) # v. Since @ is sup-closed, (i) implies that for every prefix

u < w there exists w’ € ¥* such that ¢(uw’) > v, which contradicts (ii).

Proving that if @ is inf-closed then (CoSafetyCl(P))<, = Topollnt(P<,) can be done similarly,
based on the observation that for all u € ¥*, if inf,/cxe @(uw’) £ v then for every word
w € X¥, we have ¢(uw) £ v. O
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5.3.3 Additional Notions Related to Quantitative Safety

In [LDL17], the authors consider the model-checking problem for properties on multi-valued
truth domains. They introduce the notion of multi-safety through a closure operation
that coincides with our safety closure. Formally, a property @ is multi-safe iff &(w) =
SafetyCl(P)(w) for every w € ¥¥. By Theorem 5.3.6, we immediately obtain the following.

Proposition 5.3.29. A property is multi-safe iff it is safe.

Although the two definitions of safety are equivalent, our definition is consistent with the
membership problem for quantitative properties and motivated by their monitoring.

In [GS22], the authors extend a refinement of the safety-liveness classification for monitor-
ing [PH18] to richer domains. They introduce the notion of verdict-safety through dismissibility
of values not less than or equal to the property value. Formally, a property @ is verdict-safe iff
for every w € ¥ and v £ @(w), there exists a prefix u < w such that for all w' € ¢, we
have ®(uw'’) # v.

We demonstrate that verdict-safety is weaker than safety. Moreover, we provide a condition
under which the two definitions coincide. To achieve this, we reason about sets of possible
prediction values: for a property @ and u € ¥*, let Pp,, = {®(uw) | w € £¥}.

Lemma 5.3.30. A property @ is verdict-safe iff &(w) = sup(lim,~,, Pp,,) for all w € ¥¥.

Proof. For all w € ¥* let us define P, = limy~y, Py = Ny<w Pou. Assume @ is verdict-safe
and suppose towards contradiction that ¢(w) # sup P,, for some w € ¥“. If ®(w) £ sup P,,
then &(w) ¢ P,, which is a contradiction. Otherwise, if &(w) < sup P, there exists v £ $(w)
with w € P,. It means that there is no u < w that dismisses the value v £ ®(w), which
contradicts the fact that & is verdict-safe. Therefore, ®(w) = sup P, for all w € ¥¢.

We prove the other direction by contrapositive. Assume @ is not verdict-safe, i.e., for some
w € X and v £ &(w), every u < w has an extension w’ € 3¢ with &(uw’) = v. Equivalently,
for some w € ¥* and v £ ®(w), every u < w satisfies v € Pg,,. Then, v € P, but since
v £ &(w), we have sup P, > &(w). O

Notice that @ is safe iff ®(w) = lim, <, (sup Ps,,) for all w € ¥*, thanks to Theorem 5.3.6.
Below we describe a property that is verdict-safe but not safe.

Example 5.3.31. Let ¥ = {a,b}. Define & by &(w) = 0 if w = a*, and ¢(w) = |u
otherwise, where u < w is the shortest prefix in which b occurs. The property @ is verdict-safe.
First, observe that D = NU {oo}. Let w € ¥ and v € D with v > @(w). If &(w) > 0, then
w contains b, and ®(w) = |u| for some u < w in which b occurs for the first time. After the
prefix u, all w' € ¥¢ yield ®(uw') = |u|, thus all values above |u| are rejected. If P(w) =0,
then w = a*. Let v € N with v > 0, and consider the prefix a* < w. Observe that the set
of possible prediction values after reading " is {0,v + 1,v + 2, ...}, therefore a’ allows the
ghost monitor to reject the value v. However, ¢ is not safe because, although ®(a*) = 0, for
every u < a, we have sup,,cs. P(uw') = oo.

The separation is due to the fact that for some finite traces, the sup of possible prediction
values cannot be realized by any future. This is not the case for the minimal response-time
property @i, from Theorem 5.3.2 because for every u € >* the continuation gr* realizes the
value sup,csw Pmin(uw’), and thus @, is sup-closed.
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Recall from the introduction the ghost monitor that maintains the sup of possible prediction
values. For monitoring sup-closed properties this suffices; otherwise the ghost monitor also
needs to maintain whether or not the supremum of the possible prediction values is realizable
by some future continuation. In general, we have the following for every sup-closed property.

Lemma 5.3.32. Let ¢ be a sup-closed property. Then, lim,, <, (sup Pp,,) = sup(lim, <y, Ps.)
for all w € >%.

Proof. Note that lim, ., (sup Psp,,) > sup(lim,, Ps.,) holds in general, and we want to show
that lim,, ., (sup Psp,) < sup(lim,,, Psp,,) holds for every sup-closed @. Let w € ¥“. Since
the sequence (Pp,,)u<w Of sets is nonincreasing and sup Py, € Pp,, for every u € ¥* (thanks
to sup-closedness of @), we have sup Py, € Py, for every u, v’ € ¥* with u < u'. Moreover,
lim, <y (sup Pp.) € Pp, for every v/ € ¥* with v/ < w. Then, by definition, we have
limy, <y (sup Pg.,) € limy<y Ps ., and therefore lim,, ., (sup Psp ) < sup(lim,~, Pp). O

As a consequence of the above, we get the following.

Theorem 5.3.33. Every safety property is verdict-safe, but not vice versa. Moreover, a
sup-closed property is safe iff it is verdict-safe.

Let us conclude with a remark on the form of hypotheses in our definition of safety.

Remark 5.3.34. Suppose we define safety with strict lower bound hypotheses instead of
nonstrict: for every w € ¥ and value v € D with ®(w) # v, there is a prefix u < w such
that sup,,csw P(uw’) # v. Let w be an arbitrary word and consider v = ®(w). It is clear
that this definition would require the sup of possible prediction values to converge to ®(w)
after a finite prefix, which is too restrictive.

5.4 The Quantitative Safety-Progress Hierarchy

The safety-progress classification of boolean properties [CMP93] is a Borel hierarchy built from
the Cantor topology of traces. Safety and co-safety properties lie on the first level, respectively
corresponding to closed sets and open sets. The second level is obtained through countable
unions and intersections of properties from the first level: persistence properties are countable
unions of closed sets, while response properties are countable intersections of open sets. We
generalize this construction to the quantitative setting.

In the boolean case, each property class is defined through an operation that takes a set
S C ¥* of finite traces and produces a set P C X% of infinite traces. For example, to obtain
a co-safety property from S C 3*, the corresponding operation yields S>“. Similarly, we
formalize each property class by a value function.

Definition 5.4.1 (Limit property). A property & : ¥ — I is a limit property when there
exists a finitary property m : ¥* — D and a value function Val : D¥ — D such that
&(w) = Valy<ym(u) for all w € 3¥. We denote this by ® = (m,Val). In particular, if
¢ = (m,Val) for Val € {Inf, Sup, LimInf, LimSup}, then & is a Val-property.

Remark 5.4.2. Every quantitative property @ : ¥ — D where |X| < |D| is a limit property
because m can encode infinite words through their prefixes and Val can map each infinite
sequence (corresponding to a unique infinite word) to the desired value. Below, we focus on
particular value functions (namely Inf, Sup, LimInf, LimSup) for which this is not possible.
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To account for the value functions that construct the first two levels of the safety-progress
hierarchy, we start our investigation with Inf- and Sup-properties and later focus on LimInf-
and LimSup- properties.

5.4.1 Infimum and Supremum Properties

Let us start by showing that Inf-properties are closed under countable infima.

Proposition 5.4.3. Every countable infinum of Inf-properties is an Inf-property.

Proof. Let &; = (m;,Inf) be for each i € N. Let & = (m, Inf) where m(u) = inf;enm;(u)
for all u € ¥*. Let w € X“ be arbitrary. We have ®(w) = Inf, -, infienymi(u) =
infieN Infwwm(u) = infieN ¢Z<U})

We show below that Inf, -, inf;en 7;(u) = inf;ey Inf, <7 (u) holds. Note that we can assume
without loss of generality that for each ¢ € N, the finitary property 7; is nonincreasing. For
each i € N, let x; = Inf,_,m(u). For each v < w, let y, = infien7;(u). Moreover, let
r = infeyx; and y = infjcyy;. Let us denote by u; the prefix of w of length j. For all
i,j € N, we have z < z; < m;(u;) and y < y; < m;(u;). Then, z and y are lower bounds
on the set P = {m;(u;) | 7,7 € N}. Now, let z be another lower bound, i.e., z < m;(u;) for
all 4,5 € N. For a fixed i € N, we still have z < 7;(u;) for all 7 € N. It means that z is a
lower bound on the sequence (m;(u)).<w and since z; is the infimum of this sequence, we
have z < x;. Moreover, since this holds for any 7 € N and = = inf,;cy x;, we have z < x. By
similar arguments, we obtain z < y. It implies that both x and y are the greatest lower bound
on P, which means x = y due to the uniqueness of greatest lower bound. O]

Next, we demonstrate that the minimal response-time property is an Inf-property.

Example 5.4.4. Recall the safety property ®,,;, of minimal response time from Theorem 5.3.2.
We can equivalently define ®@..;, as a limit property by taking the finitary property m,s; and the
value function Inf. As discussed in Theorem 5.3.2, the function ,s; outputs the response time
for the last request when all requests are granted, and oo when there is a pending request or
no request. Then Inf, -, 7ast(t) = Prin(w) for all w € ¥¢, and therefore @y = (7)ast, Inf).

In fact, the safety properties coincide with Inf-properties.

Theorem 5.4.5. A property @ is safe iff it is an Inf-property.

Proof. Assume @ is safe. By Theorem 5.3.6, we have &(w) = inf, -, sup, ey @(uw’) for
all w € . Then, simply taking 7(u) = sup,csw @(uw’) for all u € ¥* yields that @ is an
Inf-property.

Now, assume @ is an Inf-property, and suppose towards contradiction that @ is not safe.
In other words, let & = (m,Inf) for some finitary property m : ¥* — D and suppose
Inf,~z SUPesw P(uw') > @(z) = Inf,z,m(u) for some x € . Let u € ¥* and note that
SUD,ese P(uw') = sup,esw (Infy<uwm(u')) by definition. Moreover, for every w' € £,
notice that Inf, -7 (vw') < 7(u) since v < uw’. Then, we obtain sup, s @(uw’) <
m(u) for every u € ¥*. In particular, this is also true for all v < z. Therefore, we get
Inf,~z SUD,exe P(uw') < Inf,_,7(u), which contradicts to our initial supposition. O
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Notice that Theorems 5.4.3 and 5.4.5 imply a stronger closure result than Theorem 5.3.4:
safety properties are closed under countable infima.

Defining the minimal response-time property as a limit property, we observe the following
relation between its behavior on finite traces and infinite traces.

Example 5.4.6. Consider the property @iy = (Tjast, Inf) from Theorem 5.4.4. Let w € ¥
and v € D. Observe that if the minimal response time of w is at least v, then the last response
time for each prefix u < w is also at least v. Conversely, if the minimal response time of w is
below v, then there is a prefix u < w for which the last response time is also below v.

In light of this observation, we provide another characterization of safety properties, explicitly
relating the specified behavior of the limit property on finite and infinite traces.

Theorem 5.4.7. A property @ : ¥ — D is safe iff ® = (w,Val) such that for every w € %%
and value v € D, we have &(w) > v iff m(u) > v for all u < w.

Proof. Assume @ is safe. Then, we know by Theorem 5.4.5 that @ is an Inf-property, i.e.,
& = (m, Inf) for some finitary property 7 : 3* — D, and thus a limit property. Suppose towards
contradiction that for some w € £“ and v € D we have (i) ¢(w) > v and 7(u) # v for some
u < w, or (ii) @(w) # v and 7(u) > v for every u < w. One can easily verify that (i) yields
a contradiction, since if for some u < w we have 7(u) # v then Inf,-,m(u) = ®(w) # v.
Similarly, (ii) also yields a contradiction, since if ®(w) = Inf,<,m(u) 2 v then there exists
u < w such that 7(u) ? v.

Now, assume @ = (, Val) for some finitary property 7 and value function Val such that for
every w € X* and value v € D we have &(w) > v iff w(u) > v for every u < w. We claim
that &(w) = Inf,<,m(u) for every w € ¥*. Suppose towards contradiction that the equality
does not hold for some trace. If @(w) # Inf,<,7(u) for some w € 3¢, let v = Inf, -, 7(u)
and observe that (i) ®(w) 2 v, and (ii) Inf,~,7(u) > v. However, while (i) implies m(u) 2 v
for some u < w by hypothesis, (i) implies (u) > v for all u < w, resulting in a contradiction.
The case where &(w) £ Inf,~,m(u) for some w € X¢ is similar. It means that @ is an
Inf-property. Therefore, @ is safe by Theorem 5.4.5. O]

Finally, observe that the maximal response-time property is a Sup-property. As Sup-properties
and Inf-properties are dual, Sup-properties are closed under countable suprema (see Theo-
rem 5.4.3). Thanks to the duality between safety and co-safety, we also obtain the following
characterizations.

Theorem 5.4.8. For every property @ : > — D, the following are equivalent.

1. @ is co-safe.
2. @ is a Sup-property.

3. @ = (m,Val) such that for every w € ¥* and value v € D, we have ®(w) < v iff
m(u) <wv for all u < w.
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5.4.2 Limit Inferior and Limit Superior Properties

Let us start with an observation on the minimal response-time property.

Example 5.4.9. Recall once again the minimal response-time property ®,.;, from Theo-
rem 5.3.2. In the previous subsection, we presented an alternative definition of &, to
establish that it is an Inf-property. Observe that there is yet another equivalent definition of
Dnin Which takes the nonincreasing finitary property my;, from Theorem 5.3.2 and pairs it
with either the value function LimInf, or with LimSup. Hence ®,,;, is both a LimInf- and a
LimSup-property.

Before moving on to investigating LimInf- and LimSup-properties more closely, we show that
the above observation can be generalized.

Theorem 5.4.10. For each Val € {Inf,Sup}, every Val-property is both a LimInf- and a
LimSup-property.

Proof. Let & = (m,Inf) and define an alternative finitary property as follows: 7'(u) =
min, <, 7(u). One can confirm that 7’ is nonincreasing and thus lim, ., 7'(u) = Inf, <, 7(u)
for every w € 3. Then, letting ®; = (7', LimInf) and @, = (7’, LimSup), we obtain that
D(w) = P1(w) = Po(w) for all w € ¢, For Val = Sup we use max instead of min. O

An interesting response-time property beyond safety and co-safety arises when we remove
extreme values: instead of minimal response time, consider the property that maps every
trace to a value that bounds from below, not all response times, but all of them from a point
onward (i.e., all but finitely many). We call this property tail-minimal response time.

Example 5.4.11. Let ¥ = {rq,gr, tk,o00} and 7,sx be the finitary property from Theo-
rem 5.3.2 that computes the last response time. We define the tail-minimal response-time
property as @imin = (Tjast, LimInf). Intuitively, it maps each trace to the least response time
over all but finitely many requests. This property is interesting as a performance measure,
because it focuses on the long-term performance by ignoring finitely many outliers. Consider
w € X¥ and v € D. Observe that if the tail-minimal response time of w is at least v, then
there is a prefix u < w such that for all longer prefixes u < u' < w, the last response time in
u' is at least v, and vice versa.

Similarly as for Inf-properties, we characterize LimInf-properties through a relation between
property behaviors on finite and infinite traces.

Theorem 5.4.12. A property @ : ¥ — D is a LimInf-property iff ® = (m, Val) such that for
every w € 3¥ and value v € D, we have ®(w) > v iff there exists u < w such that for all
u = u < w, we have t(u') > v.

Proof. Assume @ is a LimInf-property, i.e., ® = (m, LimInf) for some finitary property 7 :
¥* — . Suppose towards contradiction that for some w € ¥* and v € D we have (i)
&(w) > v and for all u < w there exists u <« < w such that m(u’) 2 v, or (ii) &(w) # v
and there exists u < w such that for all u <« < w we have 7(u’) > v. One can easily verify
that (i) yields a contradiction, since if for all u < w there exists u < v/ < w with 7(u') % v,
then LimInf, -, 7(u) = ®(w) 2 v. Similarly, (ii) also yields a contradiction, since if there exists
u < w such that for all w < v’ < w we have 7(u’) > v then LimInf, -, m(u) = ®(w) > v.
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Now, assume @ = (m, Val) for some finitary property = and value function Val such that
for every w € ¥ and value v € D we have @(w) > v iff there exists u < w such that
for all u <= v/ < w we have 7w(u') > v. We claim that ®(w) = LimInf,~,7(u) for every
w € X*. Suppose towards contradiction that the equality does not hold for some trace.
If &(w) # LimInf,-,7(u) for some w € 3¢, let v = Liminf,~,m(u) and observe that (i)
&(w) # v, and (ii) LimInf, -, m(u) > v. However, by hypothesis, (i) implies that for all u < w
there exists u < v’ < w with 7(u’) 2 v, which means that LimInf, ., 7(u) ? v, resulting in
a contradiction to (ii). The case where ®(w) £ Liminf,~,7(u) for some w € ¥“ is similar.
Therefore, @ is a LimlInf-property. O]

Next, we show that LimInf-properties are closed under pairwise minimum.

Proposition 5.4.13. For every value domain D, the set of LimInf-properties over D is closed
under min.

Proof. Consider two LimInf-properties ®; = (1, LimInf), &3 = (79, LimInf) and let & be as
follows: @ = (m, LimInf) where 7(u) = min(m(u), m2(u)) for all u € X*. We now prove that
&(w) = min(Py(w), P2(w)) for all w € 3¢,

Suppose towards contradiction that min(®; (w w ) 2 @(w) for some wE XY, Observe
that for all w’ € ¥¥ and v € D, if min(P; (w ) z v then 1 (w') # v or 452 ") # v.
We assume without loss of generality that @ (w z 45 ). By Theorem 5.4.12, 451 ) 2 P(w
implies that for all u' < w there exists v/ < u” < w such that m (u”) # ®(w). Dually, since
&(w) > P(w), there exists t < w such that 7(t') > &(w) for all t < ¢ < w. In particular,
there exists ¢ < t” < w such that 71 (t") #? ®(w) and 7(t") > &(w). By the definition of
min, we have that (") > m(¢") > ®(w) which contradicts that 7 (¢") # ®(w). Hence, we
proved that min(®;(w), Po(w)) > d(w) for all w € ¥,

Suppose towards contradiction that Q_b ) # min(Py(w), P2(w)) for some w € . In
particular, LimInf, ., min(m(u), o 2 min( @1( ), @o(w)). Observe that for all u € ¥*
and v € D, if min(m(u), m(u)) 3_4 v then 7 (u 2 v or my(u) # v. We assume without
loss of generality that [{u | Ju < « < w : () # min(P;(w), Po(w))}| = oo, or
equivalently for all u < w, there exists u = v < w such that m (u') # min(®;(w), P2(w)).
By Theorem 5.4.12, we get ®;(w) # min(P(w), Po(w)). By the definition of min, we
have that &, (w) > min(®; (w), @2( )) which contradicts that @1 (w) # min(®;(w), Pa(w)).
Hence, we proved that &(w) > min(®;(w), P2(w)) for all w € X. O

Now, we show that the tail-minimal response-time property can be expressed as a countable
supremum of Inf-properties.

Example 5.4.14. Leti € N and define ; .+ as a finitary property that imitates s from
Theorem 5.3.2, but ignores the first i observations of every finite trace. Formally, for all
u € X*, we define m; jast(u) = Tpast(v') if u = uu’ where u; < w with |u;| =i and v’ € ¥*, and
T 1ast(u) = 00 otherwise. Observe that an equivalent way to define ® i, from Theorem 5.4.11
is sup;en(Infy<w (mi ase(w))) for all w € X¥. Intuitively, for each i € N, we obtain an Inf-
property that computes the minimal response time of the suffixes of a given trace. Taking the
supremum over these, we obtain the greatest lower bound on all but finitely many response
times.

We generalize this observation and show that every LimInf-property is a countable supremum
of Inf-properties.
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Theorem 5.4.15. Every LimInf-property is a countable supremum of Inf-properties.

Proof. Let & = (m, LimInf). For each i € N let us define &; = (m;, Inf) where 7; is as follows:
mi(u) = T if |[u| <, and m;(u) = 7(u) otherwise. We claim that ®(w) = sup,.y @:(w)
for all w € X*¥. Expanding the definitions, observe that the claim is LimiInf,-,m(u) =
sup;ey Infu<wmi(w). Due to the definition of Liminf, the expression sup;ey Infy<waju>im (1)
equals the left-hand side. Moreover, by the definition of 7;, it equals the right-hand side. [

We would also like to have the converse of Theorem 5.4.15, i.e., that every countable supremum
of Inf-properties is a LimInf-property. Currently, we are able to show only the following.

Proposition 5.4.16. Consider an infinite sequence (®;);cn of properties with ®; = (m;, Inf)
for each i € N. The property ¢ = (m, LimInf) where m(u) = max;<|, m(u) for all u € ¥*
satisfies sup,cy @;(w) < @(w) for all w € X¥.

Proof. For each i € N, assume without loss of generality that each 7; is nonincreasing. Let @ =
(7, LimInf) be as in the statement. We want to show that sup,.y @;(w) < @(w) for all w € X¥.
Expanding the definitions, observe that the claim is the following: sup,cy(Infy<,mi(u)) <
LimInf,, ., (max; <y m;(u)) for all w € X<

Let w € ¥¥, and for each k € N, let n, = max;< Inf,,m(u) and my = max;< m (ug)
where u;, < w with |ug| = k. Observe that we have ny < my for all k& € N. Then,
we have liminfy_,., 1y < liminfy ., my. Moreover, since the sequence (ny)ren is nonde-
creasing, we can replace the liminf on the left-hand side with lim to obtain the following:
limy 00 max;<y Inf, 2, m;(uw) < liminfy, o max;<x m;(ug). Then, rewriting the expression
concludes the proof by giving us sup,cy(Infy<,mi(w)) < Limlnf, -, (max; <, m;(u)). O

Remark 5.4.17. Consider an infinite sequence (;);cn of finitely-converging Inf-properties, i.e.,
for every i € N and every infinite word w there is a prefix u < w such that ®;(w) = ®(uw') for
all continuations w'. Evidently, each ®; is also a Sup property. Moreover, since Sup-properties
are closed under countable suprema, sup,.y P; is a Sup-property, and thus a LimInf-property
by Theorem 5.4.10.

We conjecture that some LimInf-property that is an upper bound like in Theorem 5.4.16 is
also a lower bound on the countable supremum that occurs in the theorem. (The property
& in Theorem 5.4.16 is not one.) This, together with Theorem 5.4.16, would imply the
converse of Theorem 5.4.15. Proving the converse of Theorem 5.4.15 would give us, thanks
to the following duality, that the LimInf- and LimSup-properties respectively characterize the
countable suprema of Inf-properties and countable infima of Sup-properties, completing the
picture for the generalization of the safety-progress hierarchy to the quantitative setting.

Proposition 5.4.18. A property & is a LimInf-property iff its complement & is a LimSup-
property.

5.5 Approximate Monitoring through Approximate
Safety

In this section, we consider properties on extended reals R** = R U {—o0, +00}. We denote
by R the set of nonnegative real numbers.
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Definition 5.5.1 (Approximate safety and co-safety). Let o € R>q. A property @ is a-safe
iff for every w € ¥¢ and value v € R with ®(w) < v, there exists a prefix u < w such
that sup,csw @(uw’) < v + a. Similarly, ® is a-co-safe iff for every w € ¥ and v € R*>®
with &(w) > v, there exists u < w such that inf,cxo P(uw’) > v — . When & is a-safe
(resp. a-co-safe) for some o € R, we say that @ is approximately safe (resp. approximately
co-safe).

Approximate safety can be characterized through the following relation with the safety closure.

Proposition 5.5.2. Let a € Rs. A property ¢ is a-safe iff &*(w) — &(w) < « for all
w e X¥.

Proof. Let @ and « be as above. We show each direction separately by contradiction.
First, assume & is a-safe. Suppose towards contradiction that ®*(w) — ®(w) > « for
some w € ¥¥. Let v = *(w) — a and notice that since @ is a-safe, there exists u < w
such that sup,cyw @(uw’) < v+ a = &*(w). By definition, we get sup,, s P(uw’) <
inf; -, Sup,cse @(tw’), which is a contradiction.

Now, assume ¢*(w) — ®(w) < « for all w € ¥¥. Suppose towards contradiction that
@ is not a-safe, i.e., there exists w € ¥ and v € D such that (i) ¢(w) < v and (ii)
SUD,rexe P(uw’) > v+ a for all w < w. Note that (i) implies v + a > ®(w) + «, and (ii)
implies inf, <, Sup,, cxe @(uw’) > v + a. Combining the two with the definition of * we get
&*(w) > &(w) + «, which is a contradiction. O

An analogue of Theorem 5.5.2 holds for approximate co-safety and the co-safety closure.
Moreover, approximate safety and approximate co-safety are dual notions that are connected
by the complement operation, similarly to their precise counterparts (Theorem 5.3.10).

5.5.1 The Intersection of Approximate Safety and Co-safety

Recall the notion of ghost monitors from the introduction. If, after a finite number of
observations, all the possible prediction values are close enough, then we can simply freeze
the current value and achieve a sufficiently small error. This happens for properties that are
both approximately safe and approximately co-safe, generalizing the unfolding approximation
of discounted properties [BH14] and Theorem 4.3.9.

Proposition 5.5.3. For every limit property @ and all o, 5 € R, if @ is c-safe and [3-co-safe,
then the set S5 = {u € ¥* | sup,, cx« P(uty) — infy,ex- P(uty) > 6} is finite for all § > a+ 3.

Proof. Let o, 5 € R>( and @ be a limit property that is a-safe and [3-co-safe. Assume towards
contradiction that |Ss| = oo for some § > a + (3. Notice that Ss is prefix closed, i.e., for
all u,t € ¥* having both t < u and u € S5 implies t € Ss. Then, by Konig's lemma, there
exists w € ¥ such that u € Ss for every prefix u < w. Let u; < w be the prefix of length .
We have that lim,,_, (SUp;, ey P(unt1) — infy,exx P(unta)) > 0 > o + 3. This implies that
&*(w) — @.(w) > o + B, which contradicts the assumption that @ is a-safe and (-co-safe.
Hence Ss is finite for all 6 > o + 5. m

Based on this proposition, we show that, for limit properties that are both approximately
safe and approximately co-safe, the influence of the suffix on the property value is eventually

negligible.
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Theorem 5.5.4. For every limit property & such that ®(w) € R for all w € ¥*, and for all
a, B € Ry, if D is a-safe and [3-co-safe, then for every 6 > o+ 3 and every w € ¥, there
is a prefix u < w such that for all continuations w' € ¥* U X*, we have |®(uw') — @(u)| < 6.

Proof. Given a, 3 € R>y and @ as in the statement, assume @ is a-safe and [3-co-safe. Let
0 > a-+ [ and w € ¥“ be arbitrary. Let S5 be as in Proposition 5.5.3. Since Sj is finite
and prefix closed, there exists u < w such that ut ¢ Ss for all t € ¥*. Let u < w be the
shortest such prefix. By construction, sup,, ¢y @(ut1) — infy,ex- @(uty) < 6. Furthermore,
for all ¢ € ¥*, we trivially have infy,es- @(uty) < P(ut) < supy, cx- P(uty). In particular,
infy,es- P(uty) < O(u) < sup, ex- P(uty) holds simply by taking ¢t = . Then, one can
easily obtain —§ < @(ut) — &(u) < 0 for all t € *. Since @ is a limit property, this implies
—0 < P(uw') — P(u) < § for all w' € ¢ as well. O

We illustrate this theorem with a discounted safety property.

Example 5.5.5. Let P C > be a boolean safety property. We define the finitary property
7p : B — [0,1] as follows: mp(u) =1 if uw € P for some w € ¥, and 7p(u) = 1 — 271l
otherwise, where t < w is the shortest prefix with tw ¢ P for all w € ¥X“. The limit
property @ = (mp, Inf) is called discounted safety. Because ® is an inf-property, it is safe by
Theorem 5.4.5. Now consider the finitary property ' defined by m/(u) = 1 — 271 ifuw € P
for some w € X%, and 7wl (u) = 1 — 271"l otherwise, where t < u is the shortest prefix with
tw ¢ P for all w € ¥X*. Let &' = (7, Sup), and note that ¢(w) = &' (w) for all w € ¥¥.
Hence @ is also co-safe, because it is a Sup-property.

Let w € ¥X¥ and 6 > 0. For every prefix u < w, the set of possible prediction values is either a
subset of the range [1 — 2~ lul, 1] or the singleton {1 — 2_‘”}, where t < w is chosen as above.
In the latter case, we have |®(uw') — @(u)| =0 < 0 for all w' € ¥* UX. In the former case,
since the range becomes smaller as the prefix grows, there is a prefix v’ < w with 271%'1 < §,
which yields |P(u'w'") — @(u')| < 0 for all w' € ¥* U X%,

5.5.2 Finite-state Approximate Monitoring

Monitors with finite state spaces are particularly desirable, because finite automata enjoy
a plethora of desirable closure and decidability properties. Here, we prove that properties
that are both approximately safe and approximately co-safe can be monitored approximately
by a finite-state monitor. First, we recall the notion of abstract (quantitative) monitor
from Chapter 4.

A binary relation ~ over >* is an equivalence relation iff it is reflexive, symmetric, and transitive.
Such a relation is right-monotonic iff u; ~ us implies uit ~ ust for all uy, us, t € ¥*. For an
equivalence relation ~ over ¥* and a finite trace u € ¥*, we write [u].. for the equivalence
class of ~ to which u belongs. When ~ is clear from the context, we write [u] instead. We
denote by 3* /~ the quotient of the relation ~.

An abstract monitor M = (~, ) is a pair consisting of a right-monotonic equivalence relation
~ on ¥* and a function 7: (3¥*/ ~) — R. The monitor M is finite-state iff the relation ~
has finitely many equivalence classes.

Let dfin, dlim € R be error bounds. We say that M is a (0, O1im )-monitor for a given limit
property @ = (m, Val) iff for all u € ¥* and all w € ¢, we have |r(u) — v([u])| < g, and
Vali<w(m(2)) — Vali<w (Y([¢])] < Gim-
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Building on Theorem 5.5.4, we identify a sufficient condition to guarantee the existence of an
abstract monitor with finitely many equivalence classes.

Theorem 5.5.6. For every limit property @ such that ®(w) € R for all w € ¥, and for all
error bounds «, 3 € Rs, if @ is a-safe and [3-co-safe, then for every real 6 > o + [3, there
exists a finite-state (0, d)-monitor for ®.

Proof. Let «, 5 € R>, and @ be a limit property such that ¢(w) € R for all w € ¥“. Assume
@ is a-safe and [-co-safe, and let 6 > a + 3. We show how to construct a finite-state
(0, 0)-monitor for .

Consider the finite set S5 from Proposition 5.5.3. If S; is empty, then |®(u;) — P(usz)| < 0
holds for all u;,us € ¥*, and thus we can construct a trivial (§, §)-monitor for @ simply by
(arbitrarily) mapping all finite traces to @(¢). So, we assume without loss of generality that
Ss is not empty.

Consider the function <g,: ¥* — ¥* such that <g,(u) = u if u € S5, and <g,(u) = o’
otherwise, where u' < w is the the shortest prefix with v’ ¢ S5. We let M = (~,7) where
~ = {(ur,u2) | Zs;(u1) = =<g,(u2)} and y([u]) = &(=Zgs,(u)). By construction, ~ is
right-monotonic and has at most || x |Ss| equivalence classes.

Now, we prove that [®(u) — v([u])| < d for all uw € X*. If u € S5, then v([u]) = @(u) by
definition, and the statement holds trivially. Otherwise, if u ¢ Ss, we let v’ = <g,(u), which
gives us |P(u'ty) — @(u'ty)| < § for all ty,t5 € 3*. In particular, |?(u) — v([u])| < J since
v’ < u. We remark that since @ is a limit property, an error of at most ¢ on finite traces
implies an error of at most d on infinite traces.

Finally, we prove that ~ is right-monotonic. Let uy,us € ¥* such that u; ~ us. Note that
u; ~ ug implies u; € S5 & us € S5 by definition of <g,. If uj,us € S5, then =g, is the
identity function, and thus ujt ~ ust for all t € 3* trivially. Otherwise, if uy,us ¢ Ss, we
define u = <g,(u1) = =g, (u2) ¢ Ss. By definition of <g,, we have that <g,(u) ¢ S5 implies
=g, (ut) = <g;(u) for all t € £*. In particular, ut ~ ust for all t € 3*. O

Due to Theorem 5.5.6, the discounted safety property of Example 5.5.5 has a finite-state
monitor for every positive error bound. We remark that Theorem 5.5.6 is proved by a
construction that generalizes the approach for the approximate determinization of discounted
automata [BH14], which unfolds an automaton until the distance constraint is satisfied.

5.6 Quantitative Liveness

A boolean property P C 3“ is live in the boolean sense iff for every u € »* there exists
w € 3¢ with uw € P [AS85], in other words, a wrong membership hypothesis can never be
dismissed by a finite prefix. Similarly as for safety, we take the perspective of the quantitative
membership problem to define liveness: a property @ is live iff whenever a property value is
less than T, there exists a value v for which the wrong hypothesis @(w) > v can never be
dismissed by any finite witness u < w.

Definition 5.6.1 (Liveness). A property  : ¥ — D is live in D when for all w € ¥, if
&(w) < T, then there exists a value v € D such that ¢(w) # v and for all prefixes u < w,
we have sup,cs. P(uw’) > v.
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When we write that a property @ : 3¢ — D is live (instead of live in D), we mean that @ is
live in the value domain Dg = {v € D | v < T4}, and we let T = supDg. This is motivated
by the following remark showing that a property’s liveness may be closely tied to its value
domain.

Remark 5.6.2. Liveness of a property may depend on the top value of its value domain.
Consider a liveness property @ : ¥ — D and the value domains Dg = {v € D | v < T} and
D' =DU{T'} withv < T’ for all v € D.

The property &1 : ¥ — Dg where &(w) = &1(w) for all w € 3¢ is also live in Dg. This is
easy to see by definition. For words w € ¥.* with &(w) = T¢, the property is vacuously live
in Dg, and those with ®(w) < Tg, it is live in Dg thanks to its liveness in D.

In contrast, &y : ¥ — I where &(w) = Po(w) for all w € X may be not live in D'. For
example, consider ¥ = {a,b} and D = {0, z,y,1} where 0 <z <1 and 0 <y < 1 but x and
y are incomparable. Let ®(w) = x ifw € ¥*a¥, let ®(w) =y if w € X*V, and let (w) =1
otherwise. The property @ is live in D since Tg = supD = 1 and sup,,cyw P(uw) =1 for
every u € X*. However, considering the domain ' = D U {2} with 1 < 2, the same property
is not live in I because ®((ab)*) = 1 and the only wrong lower bound hypothesis for (ab)*
is supD)' = 2, which can be dismissed as sup,,cs. @(uw) =1 for every prefix u < (ab)“. In
fact, for every property @ : ¥ — D, if T¢ < T and T4 is attainable by some word, then @ is
not live in D.

Let us first show that our definition of liveness generalizes the boolean one.

Proposition 5.6.3. Quantitative liveness generalizes boolean liveness. In particular, for every
boolean property P C Y%, the following statements are equivalent:

1. P is live according to the classical definition [AS85].

2. The characteristic property @p is live in B.

Proof. Recall that (1) means the following: for every w ¢ P and every u < w there exists
w’ € 3% such that uw’ € P. Expressing the same statement with the characteristic property
@p of P gives us the following: for every w € 3¢ if ®p(w) < 1 then for every u < w there
exists w’ € ¥¢ such that @p(uw’) = 1. Since B = {0,1} and 0 < 1, it is easy to see that
this statement is equivalent to the definition of liveness in B. O

Next, we provide a characterization of liveness through the safety closure operation.

Theorem 5.6.4. A property © is live iff SafetyCl(®)(w) > ¢(w) for every w € X with
D(w) < T.

Proof. First, suppose @ is live. Let w € X“ be such that &(w) < T, and let v be
as in the definition of liveness. Since sup, cso @(uw') > v for all prefixes u < w, we
have that SafetyCl(®)(w) > v. Moreover, since v £ ®(w), we are done. Now, suppose
SafetyCl(P)(w) > P(w) for every w € 3¢ with ¢(w) < T. Let w € 3¢ be such a trace,
and let v = SafetyCl(P)(w). It is easy to see that v satisfies the liveness condition since
SafetyCl(P)(w) = inf,~,, SUPyyexw P(uw’) > O(w). O

81



5.

SAFETY AND LIVENESS OF QUANTITATIVE PROPERTIES AND AUTOMATA

We show that liveness properties are closed under pairwise max considering totally-ordered
value domains.

Proposition 5.6.5. For every totally-ordered value domain D, the set of liveness properties
over D is closed under max.

Proof. Consider two properties @1, P, : 2 — D that are live in D. Let @ be their pairwise
maximum, i.e., ®(w) = max(P;(w),Py(w)) for all w € X¥. We show that & fulfills the
liveness definition for all w € X¢. If &;(w) = T or ®3(w) = T then @(w) = T. Otherwise,
for each ¢ € {1,2}, there exists v; such that @;(w) < wv;, and for all u < w we have
SUD,rexw Pi(uw’) > v;. Hence, because D is totally-ordered, defining v = max(vy, v2) implies
D(w) < v as well as sup, ey P(uw’) > v for all u < w. O

As in the boolean setting, the intersection of safety and liveness contains only the degenerate
properties that are constant, i.e., always output T.

Proposition 5.6.6. A property @ is safe and live iff ®(w) = T for all w € ¥¥.

Proof. Observe that the constant function @ = T s trivially safe and live. Now, let @ be a
property that is both safe and live, and suppose towards contradiction that ®(w) < T for
some w € ¥¥. Since @ is live, there exists a value v with &(w) # v such that for all u < w,
we have sup,, s @(uw’) > v. In particular, inf, <, sup, e @(uw’) > v and @(w) # v hold,
implying SafetyCl(®)(w) > ®(w) by definition of safety closure and Theorem 5.3.6. Then,
again by Theorem 5.3.6, this contradicts the assumption that @ is safe. O]

We define co-liveness symmetrically, and note that the duals of the statements above also
hold for co-liveness.

Definition 5.6.7 (Co-liveness). A property @ : ¥ — D is co-live in D when for all w € ¥,
if &(w) > L, then there exists a value v € D such that ®(w) £ v and for all prefixes u < w,
we have inf,cxw G(uw') < v.

Next, we present some examples of liveness and co-liveness properties. We start by showing
that LimInf- and LimSup-properties can be live and co-live.

Example 5.6.8. Let 3 = {a, b} be an alphabet, and let P = (¥*a)* (infinitely many a's) and
Q = X%\ P (finitely many a’s) be boolean properties. Consider their characteristic properties
@p and $g. As we pointed out earlier, our definitions generalize their boolean counterparts,
therefore @p and @ are both live and co-live. Moreover, ®p is a LimSup-property: define
mp(u) =1 ifu € ¥*a, and mp(u) = 0 otherwise, and observe that ®p(w) = LimSup,,_,,7p(u)
for all w € ¥*. Similarly, ¢ is a LimInf-property.

Now, we show that the maximal response-time property is live, and the minimal response time
is co-live.

Example 5.6.9. Recall the co-safety property @, of maximal response time from Theo-
rem 5.3.11. Let w € ¥¥ such that @y, (w) < co. We can extend every prefix u < w with
w' = rq tk¥, which gives us P (uw') = co > ®(w). Equivalently, for every w € ¥¥, we
have SafetyCl(Pmax) (W) = 00 > Ppax(w). Hence @,y is live and, analogously, the safety
property @i, from Theorem 5.3.2 is co-live.
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We next present the average response-time property and show that it is live and co-live.

Example 5.6.10. Let ¥ = {rq,gr,tk,00}. For all w € ¥*, let p(u) = 1 if there is no
pending rq in u, and p(u) = 0 otherwise. Define m,yig(u) = |{v/ 2w | " € ¥* :
w =u"rqg A p(u") = 1}| as the number of valid requests in u, and define Tyme(u) as the
total number of tk observations that occur after a valid rq and before the matching gr.
Then, @4,y = (Tayg, LimInf), where ma,(u) = % for all w € ¥* with T,a4(u) > 0, and
Tavg(U) = 00 otherwise. For example, mag(u) = 3 for u = rq tk grtk rq tk rq tk. Note that
P,y Is a LimInf-property.

The property ®,,, is defined on the value domain [0, 00| and is both live and co-live. To
see this, let w € ¥* such that 0 < @,,.(w) < oo and, for every prefix u < w, consider
w' = rqtk¥ and w" = gr(rqgr)*. Since uw' has a pending request followed by infinitely
many clock ticks, we have ®,,z(uw’) = co. Similarly, since uw"” eventually has all new requests
immediately granted, we get @,,(uw”) = 0.

Notice that for the average response-time property &,,, in the example above, we have
Davg(w) = Poyg(uw) for every v € ¥* and w € X“. Such properties are called prefix
independent. Finally, we show that every prefix-independent property is both live and co-live.

Proposition 5.6.11. Every prefix-independent property @ is live and co-live.

Proof. Consider a prefix-independent property @. We only show that @ is live as its co-
liveness can be proved similarly. Suppose towards contradiction that @ is not live, and thus
by Theorem 5.6.4 that ®(w) = SafetyCl(P)(w) for some w € ¥¢ with ¢(w) < T. Let
w be such a word, and consider two prefixes u; =< us < w such that sup,/cs. P(uw’) <
SUD,rese P(uiw’). Such prefixes exist because otherwise we have a contradiction to @(w) < T.
Then, there exists w” € ¥* such that ®(usw”) < &(uyw”). Since u; = g, there is a
finite word ug with uy = wy - u3. Notice that, since @ is prefix independent, we have
O(w") = P(uw”) = P(ujuzw”), which contradicts @(usw”) < é(uyw”). O

5.6.1 The Quantitative Safety-Liveness Decomposition

A celebrated theorem states that every boolean property can be expressed as an intersection
of a safety property and a liveness property [AS85]. In this section, we prove an analogous
result in the quantitative setting.

Example 5.6.12. Let X = {rq,gr, tk,00}. Recall the maximal response-time property @ .«
from Theorem 5.3.11, and the average response-time property ®,,, from Theorem 5.6.10.
Let n > 0 be an integer and define a new property @ : ¥ — [0,n] by ®(w) = Pag(w) if
D max(w) < m, and (w) = 0 otherwise. For the safety closure of @, we have SafetyCl(P)(w) =
N if @rax(w) < n, and SafetyCl(P)(w) = 0 otherwise. Now, we further define W (w) = ®ayg(w)
if rax(w) < n, and ¥(w) = n otherwise. Observe that ¥ is live, because every prefix of a
trace whose value is less than n can be extended to a greater value. Finally, note that for
all w € ¥, we can express ®(w) as the pointwise minimum of SafetyCl(®)(w) and ¥ (w).
Intuitively, the safety part SafetyCl(®) of this decomposition checks whether the maximal
response time stays below the permitted bound, and the liveness part W keeps track of the
average response time as long as the bound is satisfied.

Following a similar construction, we show that a safety-liveness decomposition exists for every
property.
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Theorem 5.6.13. For every property @, there exists a liveness property W such that ®(w) =
min(SafetyCl(P)(w), ¥ (w)) for all w € ¥¥.

Proof. Let @ be a property and consider its safety closure SafetyCl(®). We define ¥ as
follows: ¥(w) = @(w) if SafetyCl(P)(w) # P(w), and ¥(w) = T otherwise. Note that
SafetyCl(P)(w) > &(w) for all w € ¥* by Theorem 5.3.6. When SafetyCl(P)(w) >
& (w), we have min(SafetyCl(P)(w), ¥ (w)) = min(SafetyCl(P)(w), P(w)) = ¢(w). When
SafetyCl(P)(w) = @(w), we have min(SafetyCl(P)(w), ¥(w)) = min(P(w), T) = P(w).

Now, suppose towards contradiction that ¥ is not live, i.e., there exists w € ¥ such that
U(w) < T and for all v £ &(w), there exists u < w satisfying sup,cyw P(uw') # wv.
Let w € X be such that ¥(w) < T. Then, by definition of ¥, we know that ¥ (w) =
&(w) < SafetyCl(P)(w). Moreover, since SafetyCl(P)(w) £ ¥(w), there exists u < w
satisfying sup,, ey @(uw’) 2 SafetyCl(@)(w). In particular, we have sup,, s @(uw') <
SafetyCl(®)(w). Since we have SafetyCl(P)(w) = inf, <y, sUp, eswe @(uw'w’) by definition
and u < w, it yields a contradiction. Therefore, ¥ is live. O

In particular, if the given property is safe or live, the decomposition is trivial.

Remark 5.6.14. Let @ be a property. If @ is safe, then the safety part of the decomposition
is @ itself, and the liveness part is the constant property that maps every trace to T. If @ is
live, then the liveness part of the decomposition is @ itself, and the safety part is SafetyCl(P).
Note that, in this case, SafetyCl(P) may differ from the constant function T, but taking the
safety part as constant function T is a valid decomposition.

Another decomposition theorem is the one of boolean properties over nonunary alphabets into
two liveness properties [AS85]. We extend this result to the quantitative setting.

Theorem 5.6.15. For every property @ over a nonunary alphabet 3, there exist two liveness
properties ¥, and Wy such that ¢(w) = min(¥; (w), Ya(w)) for all w € ¥,

Proof. Let X be a finite alphabet with || > 2 and a4, a; € ¥ be two distinct letters. Consider
an arbitrary property @ over ¥. For i € {1,2}, we define ¥; as follows: ¥;(w) = T if
w = u(a;)¥ for some u € ¥*, and ¥;(w) = $(w) otherwise. Note that, since a; and ay are
distinct, whenever w € ¥*(a1)* then w ¢ ¥*(a2)*, and vice versa. Then, we have that both
Uy and ¥, are T only when @ is T. In the remaining cases, when at most one of ¥; and ¥, is
T, then either both equals @ or one of them is T and the other is ®@. As a direct consequence,
O(w) = min(¥ (w), Ya(w)) for all w € X¢.

Now, we show that ¥; and ¥, are both live. By construction, ¥;(u(a;)¥) = T for all u € ¥*.
In particular, SafetyCl(¥;)(w) = inf, <, SUp,ese Yi(uw') = T for all w € ¥¥. We conclude
that ¥; is live thanks to Theorem 5.6.4. ]

For co-safety and co-liveness, the duals of Theorem 5.6.14 and Theorems 5.6.13 and 5.6.15
hold. In particular, every property is the pointwise maximum of its co-safety closure and a
co-liveness property.
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5.6.2 Threshold Liveness and Top Liveness

Threshold liveness connects a quantitative property and the boolean liveness of the sets of
words whose values exceed a threshold value.

Definition 5.6.16 (Threshold liveness and co-liveness). A property @ : ¥ — ID is threshold
live when for every v € D the boolean property @, is live (and thus ®y, is co-live).
Equivalently, ® is threshold live when for every uw € ¥* and v € D there exists w € >“ such
that ¢(uw) > v. Similarly, a property & : ¥ — D is threshold co-live when for every v € D
the boolean property @, is co-live (and thus @, is live). Equivalently, ® is threshold co-live
when for every u € ¥* and v € D there exists w € X such that ¢(uw) < v.

We relate threshold liveness with the boolean liveness of a single set of words.

Proposition 5.6.17. A property @ is threshold live iff the set @~ is live in the boolean sense.

Proof. Consider a property @ : >* — D.

(=): Assume @ to be threshold live, i.e., for every v € D the boolean property @, is live. In
particular, @~ is also live.

(«<): Assume @t to be live in the boolean sense. Observe that for every v < T we have
&>1 C P-,. Since the union of a boolean liveness property with any boolean property is
live [AS85], the boolean property @, is also live for all v < T, i.e., @ is threshold live. [

Liveness is characterized by the safety closure being strictly greater than the property whenever
possible (Theorem 5.6.4). Top liveness puts an additional requirement on liveness: the safety
closure of the property should not only be greater than the original property but also equal to
the top value.

Definition 5.6.18 (Top liveness and bottom co-liveness). A property @ is top live when
SafetyCl(P)(w) = T for every w € ¥¥. Similarly, a property @ is bottom co-live when
CoSafetyCl(®)(w) = L for every w € 3%,

We provide a strict hierarchy of threshold liveness, top liveness, and liveness.

Proposition 5.6.19. Every threshold-live property is top live, but not vice versa; and every
top-live property is live, but not vice versa.

Proof. First, we show the strict inclusion of threshold liveness in top liveness. Let @ be a
threshold-live property. In particular, taking the threshold v = T gives us that for every u € >*
there exists w € ¥* such that @(uw) = T. Then, sup,cs. @(uw) = T for all u € ¥*, which
implies that @ is top live. Next, consider the property @ over the alphabet {a,b}, defined for
all w € ¥ as follows: @(w) = |w|, if w has finitely many a's, otherwise @(w) = 0. Observe
that sup,,cs. @(uw) = oo for all u € 3*, therefore it is top live. However, for the threshold
v = 00, the set @, is empty, implying that it is not threshold live.

Now, we show that the strict inclusion of top liveness in liveness. Recall that, by Theorem 5.6.4,
a property @ is live iff for every w € ¢ if @(w) < T then &(w) < SafetyCl(P)(w). Then,
notice that if a property @ is top live, it is obviously live. Next, let 3 = {a, b} and consider the
property @ : X% — [0, 2] defined for all w € 3¢ as follows: ®(w) = 0 if w is of the form ¥*b*,
otherwise ¢(w) = ;5027 f(0;) where w = ogoy ..., f(a) =0, and f(b) = 1. Observe that
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@ is live since ®(w) < SafetyCl(P)(w) for every word w € “. However, it is not top live
since SafetyCl(®)(aw) <1 <2 =TT for all w € ¥¥. O

Top liveness does not imply threshold liveness, but it does imply a weaker form of it.

Proposition 5.6.20. For every top-live property ¢ and value v < T, the set -, is live in
the boolean sense.

Proof. Let @ be top live property, i.e., inf, -, sup, e @(uw’) = T forallw € ¢, Letv < T
be a value. Suppose towards contradiction that @, is not live in the boolean sense, i.e., there
exists 4 € ¥* such that @(dw’) 2 v for all w’ € ¥, Let w0 € ¢ be such that & < . Clearly
inf, <5 SUpP,yesw P(uw’) Z v. Either inf, <y sup, cxe @(uw’) is incomparable with v, or it is
less than v. Since T compares with all values, we have that inf, ., sup, 5. @(uw’) < T,
which contradicts the top liveness of @. O

While the three liveness notions differ in general, they do coincide for sup-closed properties.

Theorem 5.6.21. A sup-closed property is live iff it is top live iff it is threshold live.

Proof. Notice that for every sup-closed property @, top liveness means that for every u € >*
there is w € ¥“ such that &(uw) = T. Let @ be a sup-closed liveness property. Suppose
towards contradiction that it is not top live, i.e., there is u € 3* such that for all w € X% we
have @(uw) < T. Let sup,cx. P(uw) = k < T, and note that since @ is sup-closed, there
exists an infinite continuation w’ € ¥ for which ®(uw’) = k < T. As @ is live, there exists a
value v such that k& # v and for every prefix u' < uw’ there exists w” € ¢ with ¢(v'w") > v.
However, letting ©' = u yields a contradiction to our initial supposition.

Now, let @ be a sup-closed top liveness property. Thanks to Theorem 5.6.17, it is sufficient to
show that the boolean property @~ is live in the boolean sense. Suppose towards contradiction
that -7 is not live, i.e., there exists u € ¥* such that for all w € ¥* we have ¢(uw) < T.
Due to sup-closedness, we have sup,,cs.. P(uw) < T as well. Moreover, for every w € ¢
such that u < w, this means that inf, -, sup,, 5w @(uw’) < T, which is a contradiction. [

5.6.3 Additional Notions Related to Quantitative Liveness

In [LDL17], the authors define a property @ as multi-live iff SafetyCl(®)(w) > L for all
w € X*. We show that our definition is more restrictive, resulting in fewer liveness properties
while still allowing a safety-liveness decomposition.

Proposition 5.6.22. Every live property is multi-live, but not vice versa.

Proof. We prove that liveness implies multi-liveness. Suppose toward contradiction that some
property @ is live, but not multi-live. Then, there exists w € ¥ for which SafetyCl(®)(w) = L,
and therefore &(w) = L too. Note that we assume D is a nontrivial complete lattice, i.e.,
T # L. Then, since @ is live, we have SafetyCl(®)(w) > &(w) by Theorem 5.6.4, which
yields a contradiction.

Now, we provide a separating example on a totally ordered domain. Let ¥ = {a,b,c},
and consider the following property: ®(w) = 0 if w = a*, and ¢(w) = 1 if w € ¥*cX¥,
and @(w) = 2 otherwise (i.e., if w has some b and no ¢). For all w € ¥X“ and prefixes
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u < w, we have &(uc”) = 1. Thus SafetyCl(®)(w) # L, which implies that @ is multi-
live. However, @ is not live. Indeed, for every w € ¥“ such that w € ¥*cX¥, we have
&(w) =1 < T. Moreover, w admits some prefix u that contains an occurrence of ¢, thus
satisfying sup,, ¢y @(uw’) = 1. O

Recall that a property is both safe and live iff it is the constant function T (Theorem 5.6.6).
For multi-safety and multi-liveness, this is not the case.

Example 5.6.23. Let > = {a,b} be an alphabet and D = {vy, v, L, T} be a lattice where
vy and vy are incomparable. Consider the property @ : ¥ — D that is defined as ®(w) = v,
ifa < w and ®(w) = ve if b < w. Recall from Theorem 5.3.12 that @ is safe, thus multi-safe
by Theorem 5.3.29. Clearly, SafetyCl(®)(w) > L for all w € ¥, thus @ is multi-live.
However, @ is not live as for all words w, we have ®(w) = SafetyCl(P)(w) < T.

In [GS22], the authors define a property @ as verdict-live iff for every w € X“ and value
v £ @(w), every prefix u < w satisfies @(uw’) = v for some w' € ¥“. We show that our
definition is more liberal.

Proposition 5.6.24. Every verdict-live property is live, but not vice versa.

Proof. The implication holds trivially. We provide a separating example below, concluding
that our definition is strictly more general even for totally ordered domains. Let ¥ = {a, b},
and consider the following property: @(w) = 0 if w = a*, and ®(w) = 1 if w € X*bE DX,
and @(w) = 271 otherwise (if w has exactly one b), where u < w is the shortest prefix in
which b occurs. Consider an arbitrary w € ¥¢. If &(w) = 1, then the liveness condition is
vacuously satisfied. If (w) = 0, then w = a*, and every prefix u < w can be extended with
w' = ba® or w" = b* to obtain ®(uw') = 2~ and G(uw”) = 1. If 0 < &(w) < 1, then
w has exactly one b, and every prefix © < w can be extended with b* to obtain @(ub*) = 1.
Hence @ is live. However, @ is not verdict-live. To see this, consider the trace w = a*ba®
for some integer k > 1 and note that ®(w) = 2-*+Y_ Although all prefixes of w can be
extended to achieve the value 1, the value domain contains elements between ¢(w) and 1,
namely the values 27™ for 1 < m < k. Each of these values can be rejected after reading a
finite prefix of w, because for n > m it is not possible to extend a™ to achieve 27, O

Let us conclude with a remark on the form of hypotheses in our definition of liveness.

Remark 5.6.25. In the same vein as Theorem 5.3.34, suppose we define liveness with strict
lower bound hypotheses instead of nonstrict: for all w € ¥¥, if ®(w) < T, then there exists a
value v € D such that ®(w) # v and for all prefixes u < w, we have sup,cs. P(uw’) > v.
Let w be a word with ®(w) < T and consider v = @(w). Evidently, according to this definition,
it would be permissible for the sup of possible prediction values to converge to ®(w), in other
words, for the safety closure to have the same value as the property on a word whose value is
less than T, which is too lenient.

5.7 Quantitative Automata
A nondeterministic quantitative automaton (or just automaton from here on) on words is a

tuple A = (X,Q,¢,d), where X is an alphabet; ) is a finite nonempty set of states; ¢ € @) is
an initial state; and §: Q x ¥ — 2(@%Q) s a finite transition function over weight-state pairs.
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A transition is a tuple (¢,0,x,¢") € Q@ X ¥ x Q x @, such that (x,¢") € d(q,0), also written
q =% ¢'. We write v(t) = x for the weight of a transition t = (¢, 0, z,¢'). A is deterministic
if for all ¢ € Q and 0 € ¥, the set §(q, o) is a singleton. We require the automaton A to be
total, namely that for every state ¢ € Q and letter 0 € ¥, there is at least one state ¢’ and a
transition ¢ =% ¢'. For a state ¢ € (), we denote by 47 the automaton that is derived from
A by setting its initial state ¢ to q.

. 0]: 1]: ..
A run of A on a word w is a sequence p = ¢ wlOlzo 1 vl ¢o . .. of transitions where

go =t and (24, ¢i+1) € 0(g;, w[i]). For 0 < i < |w|, we denote the ith transition in p by p[i],
and the finite prefix of p up to and including the ith transition by p[..i]. As each transition ¢;
carries a weight y(t;) € Q, the sequence p provides a weight sequence y(p) = v(to)v(t1) - ..
A Val-automaton is one equipped with a value function Val : Q¥ — R, which assigns real
values to runs of A.

We assume that Val is bounded for every finite set of rationals, i.e., for every finite V' C Q there
exist m, M € R such that m < Val(x) < M for every x € V¥. The finite set V' corresponds
to transition weights of a quantitative automaton, and the concrete value functions we consider
satisfy this assumption.

Notice that while quantitative properties can be defined over arbitrary value domains, we
restrict quantitative automata to totally-ordered numerical value domains (i.e., bounded
subsets of R) as this is the standard setting in the literature.

The value of a run p is Val(y(p)). The value of a Val-automaton A on a word w, denoted
A(w), is the supremum of Val(p) over all runs p of A on w, generalizing the standard approach
in boolean automata where acceptance is defined through the existence of an accepting run.

The top value of a Val-automaton A is T 4 = sup,csw A(w), which we denote by T when A
is clear from the context. Note that when we speak of the top value of an automaton or a
property expressed by an automaton, we always match its value domain to have the same top
value.

An automaton A is safe (resp. live) iff it expresses a safety (resp. liveness) property. Two
automata A and A’ are equivalent, if they express the same function from words to reals. The
size of an automaton consists of the maximum among the size of its alphabet, state-space,
and transition-space, where weights are represented in binary.

We list below the value functions for quantitative automata that we will use, defined over
infinite sequences vyv; . .. of rational weights.

= Inf(v) = inf{v, | n > 0} = Sup(v) = sup{v, | n > 0}

= Liminf(v) = lim inf{v; | i > n} = LimSup(v) = lim sup{ov; | i > n}
1 n—1 1 n—1

= LimInfAvg(v) = LimInf < > Ui> = LimSupAvg(v) = LimSup ( > vi>
" izo " izo

= For a discount factor A € QN (0,1), DSum,(v) = Ny

i>0
A value function Val is prefix independent iff for all x € Q" and all y € Q¥ we have

Val(y) = Val(zy). The value functions LimInf, LimSup, LimInfAvg, and LimSupAvg are prefix
independent, while Inf, Sup, and DSum are not.
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The following statement allows us to consider Inf- and Sup-automata as only having runs with
respectively nonincreasing and nondecreasing sequences of weights, and to also consider them
as LimInf- and LimSup-automata.

Proposition 5.7.1. Let Val € {Inf,Sup}. Given a Val-automaton, we can construct in
PTIME an equivalent Val-, LimInf- or LimSup-automaton whose runs yield monotonic weight
sequences.

Proof. Consider a Sup-automaton A = (X, Q, ¢, ). The idea is to construct an equivalent
Sup-automaton A’ that memorizes the maximal visited weight, and optionally take it as a
LimInf- or LimSup-automaton. A similar construction appears in [CDH10b, Lem. 1] where for
every run of A there is a run of A’ yielding a weight sequence that is eventually constant, but it
is not necessarily the case that every run of A’ has a monotonic weight sequence. Let V' be the
set of weights on A's transitions. Since |V| < 0o, we can fix the minimal weight vy = min(V").
We construct A’ = (,Q x V, (1,10), ") where §: (Q x V) x X — 2@*V is defined as follows.
Given p € Q, v,v' € V, and o € 3, we have that (v, (¢, max{v,v'})) € '((p,v),0) if and
only if (v/,q) € §(p, o). Notice that if A is deterministic, so is A". Clearly, the Sup-automata
A’ and A are equivalent, and the construction of A’ is in PTIME in the size of A. Observe
that, by construction, every run p of A’ yields a nondecreasing weight sequence for which
there exists i € N such that for all j > i we have v(p[i]) = v(p[j]) = Sup(v(p)). Hence, A’
can be equivalently interpreted as a Sup-, LimInf or LimSup-automaton. The construction for
a given Inf-automaton is dual as it consists in memorizing the minimal visited weight, therefore
the weight sequences are nonincreasing. O

We show that the common classes of quantitative automata always express sup-closed
properties, which will simplify the study of their safety and liveness.

Proposition 5.7.2. Let Val € {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. Ev-
ery Val-automaton expresses a property that is sup-closed. Furthermore its top value is rational,
attainable by a run, and can be computed in PTIME.

Proof. Observe that, by Theorem 5.7.1 the cases of Val € {Inf,Sup} reduce to Val €

{LimInf, LimSup}. So, we can assume that Val € {LimInf, LimSup, LimInfAvg, LimSupAvg,
DSum}.

It is shown in the proof of [CDH10b, Thm. 3] that the top value of every Val-automaton A is
attainable by a lasso run, and is therefore rational, and can be computed in PTIME. It is left
to show that A is sup-closed, meaning that for every finite word u € >*, there exists w € ¥¢,
such that A(uw) = sup,, A(uw'’).

Let U be the set of states that .4 can reach running on u. Observe that for every state ¢ € U, we
have that A7 is also a Val-automaton. Thus, by the above result, its top value T is attainable
by a run on some word w,. Hence, for Val € {LimInf, LimSup, LimInfAvg, LimSupAvg}, we
have @ = wy,, such that T, = max(T, | ¢ € U). For Val € {DSum} with a discount factor
A, let P, be the maximal accumulated value of a run of 4 on u that ends in the state g. Then,
we have @ = w,, such that P, + A . T, = max(P, + A" . T, | ¢ € U). O

5.8 Subroutine: Constant-Function Check

We will show that the problems of whether a given automaton is safe or live are closely related
to the problem of whether an automaton expresses a constant function, motivating its study
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in this section. We first prove the problem hardness by reduction from the universality of
nondeterministic finite-state automata (NFAs) and reachability automata.

Lemma 5.8.1. Let Val € {Sup, Inf, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. Decid-
ing whether a Val-automaton A expresses a constant function is PSPACE-hard.

Proof. First, we prove the case where Val € {Inf, LimInf, LimSup, LimInfAvg, LimSupAvg,
DSum}. The proof goes by reduction from the universality problem of nondeterministic
finite-state automata (NFAs), which is known to be PSPACE-complete. Consider an NFA
A= (%,0Q,t, F, ) over the alphabet ¥ = {a, b}. We construct in PTIME a Val-automaton
A= (X4,0Q',1,0") over the alphabet X, = {a, b, #}, such that A is universal if and only if
A’ is constant. A’ has two additional states, Q' = Q W {qo, ¢1}, and its transition function ¢’
is defined as follows:

= For every (¢,0,p) € 6, we have ¢ <% p.

For every ¢ € Q \ F', we have ¢ #9, qo-
= For every ¢ € F', we have ¢ #, q1.

= For every 0 € S U {#1}, we have g9 =% ¢o, and ¢1 =5 ¢1.

Let T be the top value of A’. (We have T =1 in all cases, except for Val = DSum.) First,
note that for every word w with no occurrence of #, we have that A’'(w) = T, as all runs
of A’ visit only transitions with weight 1. If A is not universal, then there exists a word
u € {a,b}* such that A has no run over u from ¢ to some accepting state, and thus all runs
of A’ over u# from ¢ reach qo. Hence, A'(u#a“) # T, while A'(a”) = T, therefore A’ is
not constant. Otherwise, namely when A is universal, all infinite words with at least one
occurrence of # can reach ¢; while only visiting 1-weighted transitions, and thus A'(w) = T
for all w € {a, b, #}“.

Next, we prove the case where Val = Sup. The proof goes by reduction from the universality
problem of a complete reachability automaton A’ (i.e., a complete Biichi automaton all of
whose states are rejecting, except for a single accepting sink). The problem is known to be
PSPACE-hard by a small adaptation to the standard reduction from the problem of whether a
given Turing machine T" that uses a polynomial working space accepts a given word u to NFA
universality’. By this reduction, if 7" accepts u then A’ accepts all infinite words, and if T
does not accept u then A’ accepts some words, while rejecting others by arriving in all runs to
a rejecting sink after a bounded number of transitions. As a complete reachability automaton
A’ can be viewed as special case of a Sup-automaton A, where transitions to nonaccepting
states have weight 0 and to accepting states have weight 1, the hardness result directly follows
to whether a Sup-automaton is constant. O

A simple solution to the problem is to check whether the given automaton A is equivalent to
an automaton B expressing the constant top value of A, which is computable in PTIME by
Theorem 5.7.2. For some automata classes, it suffices for a matching upper bound.

Proposition 5.8.2. Deciding whether an Inf-, Sup-, LimInf-, or LimSup-automaton expresses
a constant function is PSPACE-complete.

!Due to private communication with Christof Léding. See also [KZ17, Thm. A.1].
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Proof. PSPACE-hardness is shown in Theorem 5.8.1. For the upper bound, we compute in
PTIME, due to Theorem 5.7.2, the top value T of the given automaton A, construct in
constant time an automaton B3 of the same type as A that expresses the constant function T,
and check whether A and B are equivalent. This equivalence check is in PSPACE for arbitrary
automata of the considered types [CDH10b, Thm. 4]. O

Yet, this simple approach does not work for DSum-automata, whose equivalence is an open
problem, and for limit-average automata, whose equivalence is undecidable [DDG*10, CDE™*10,
HPPR18].

For DSum-automata, our alternative solution removes “nonoptimal” transitions from the
automaton and then reduces the problem to the universality problem of NFAs.

Theorem 5.8.3. Deciding whether a DSum-automaton expresses a constant function is
PSpACE-complete.

Proof. PSPACE-hardness is shown in Theorem 5.8.1. Consider a DSum-automaton 4. By
Theorem 5.7.2, for every state ¢ of A we can compute in PTIME the top value T, of A1.
We then construct in PTIME a DSum-automaton A’, by removing from A every transition
q =5 ¢, for which z + X\ - T, < T,. Finally, we consider A’ as an (incomplete) NFA A" all
of whose states are accepting.

We claim that A" is universal, which is checkable in PSPACE, if and only if A expresses a
constant function. Indeed, if A” is universal then for every word w, there is a run of A”
on every prefix of w. Thus, by Koénig's lemma there is also an infinite run on w along the
transitions of A”. Therefore, there is a run of A on w that forever follows optimal transitions,
namely ones that guarantee a continuation with the top value. Hence, by the discounting of
the value function, the value of this run converges to the top value. If A” is not universal,
then there is a finite word u for which all runs of A on it reach a dead-end state. Thus, all
runs of A on u must have a transition ¢ = ¢/, for which x + X\ - T, < T,, implying that no
run of A on a word w for which w is a prefix can have the top value. O

The solution for limit-average automata is more involved. It is based on a reduction to
the limitedness problem of distance automata, which is known to be in PSPACE [Has82,
Sim94, Has00, LP04]. We start by presenting Johnson's algorithm, which we will use for
manipulating the transition weights of the given automaton, and proving some properties of
distance automata, which we will need for the reduction.

A weighted graph is a directed graph G = (V| E) equipped with a weight function v : F — Z.
~1

The cost of a path p = vy, vy,...,vx is y(p) = Zf:o Y(vi, Vig1)-

Proposition 5.8.4 (Johnson's Algorithm [Joh77, Lem. 2 and Thms. 4 and 5]). Consider a
weighted graph G = (V, E') with weight function ~y : E — Z, such that G has no negative
cycles according to ~y. We can compute in PTIME functions h : V' — Z and v' : E — N such
that for every path p = vy, v1,...,vx in G it holds that ~'(p) = v(p) + h(ve) — h(vg).

Remark 5.8.5. Theorem 5.8.4 is stated for graphs, while we will apply it for graphs underlying
automata, which are multi-graphs, namely having several transitions between the same pairs
of states. Nevertheless, to see that Johnson's algorithm holds also in our case, one can change
every automaton to an equivalent one whose underlying graph is a standard graph, by splitting
every state into several states, each having a single incoming transition.
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A distance automaton is a weighted automaton over the tropical semiring (a.k.a., min-plus
semiring) with weights in {0, 1}. It can be viewed as a quantitative automaton over finite
words with transition weights in {0, 1} and the value function of summation, extended with
accepting states. A distance automaton is of limited distance if there exists a bound on the
automaton'’s values on all accepted words.

Lifting limitedness to infinite words, we have by Konig's lemma that a total distance automaton
of limited distance b, in which all states are accepting, is also guaranteed to have a run whose
weight summation is bounded by b on every infinite word.

Proposition 5.8.6. Consider a total distance automaton D of limited distance b, in which all
states are accepting. Then, for every infinite word w, there exists an infinite run of D on w
whose summation of weights (considering only the transition weights and ignoring the final
weights of states) is bounded by b.

Proof. Consider an infinite word w, and let T" be the tree of D's runs on prefixes of w whose
values are bounded by b. Notice that T is an infinite tree since, by the totalness of D and
the fact that all states are accepting, for every prefix of w there is at least one such run. As
the branching degree of T is bounded by the number of states in D, there exists by Konig's
lemma an infinite branch p in T'. Observe that the summation of weights along p is bounded
by b—were it not the case, there would have been a position in p up to which the summation
has exceeded b, contradicting the definition of 7. O

Lifting nonlimitedness to infinite words, it may not suffice for our purposes to have an infinite
word on which all runs of the distance automaton are unbounded, as their limit-average value
might still be 0. Yet, thanks to the following lemma, we are able to construct an infinite word
on which the limit-average value is strictly positive.

Lemma 5.8.7. Consider a total distance automaton D of unlimited distance, in which all
states are accepting. Then, there exists a finite nonempty word u such that D(u) = 1 and the
possible runs of D on u lead to a set of states U such that the distance automaton that is
the same as D but with U as the set of its initial states is also of unlimited distance.

Proof. Let () be the set of states of D. For a set S C (), we denote by D the distance automa-
ton that is the same as D but with S as the set of its initial states. Let B be the set of sets of
states from which D is of limited distance. Thatis, B = {S C Q | D" is of limited distance}.
If B = (), the statement directly follows.

Otherwise, B # (). Since for all S € B, the distance automaton D* is bounded, we can define
b as the minimal number, such that for every S € B and finite word u, we have D5 (u) < b.
Formally, b = maxsep(min{b € N | Yu € X*, D5(u) < b}). Because D is of unlimited
distance, we can exhibit a finite word mapped by D to an arbitrarily large value. In particular,
there exists a word z such that D(z) > b+ 2, i.e., the summation of the weights along every
run of D on z is at least b+ 2. Additionally, because transitions are weighted over {0, 1}, there
exists at least one prefix x < z for which D(z) = 1. Let the finite word y be such that z = xy.
Next, we prove that z fulfills the statement, namely that the distance automaton DX, where
X is the set of states that D can reach with runs on z, is also of unlimited distance. Assume
towards contradiction that X € B. By construction of B, we have that DX is of limited
distance. In fact, DX (u) < b for all finite words u, by the definition of b. Hence DX (y) < l;
implying that D(z) = D(zy) < b+ 1, leading to a contradiction, as D(z) > b+ 2. O
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Using Theorems 5.8.4, 5.8.6 and 5.8.7 we are in position to solve our problem by reduction to
the limitedness problem of distance automata.

Theorem 5.8.8. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a con-
stant function, for a given constant or any constant, is PSPACE-complete.

Proof. PSPACE-hardness is shown in Theorem 5.8.1. Consider a LimInfAvg- or LimSupAvg-
automaton A. We provide the upper bound as follows. First we construct in polynomial time
a distance automaton D, and then we reduce our statement to the limitedness problem of D,
which is decidable in PSPACE [Sim94].

By Theorem 5.7.2, one can first compute in polynomial time the top value of A denoted by
T. Thus, A expresses an arbitrary constant if and only if it expresses the constant function
T. From A, we construct the automaton A’, by subtracting T from all transitions weights
(by Theorem 5.7.2, T is guaranteed to be rational). By construction the top value of A’ is 0,
i.e., A'(w) <0 for all w, and the question to answer is whether A’ expresses the constant
function 0, namely whether or not exists some word w such that A’'(w) < 0.

Next, we construct from A’, in which the nondeterminism is resolved by sup as usual, the
opposite automaton A”, in which the nondeterminism is resolved by inf, by changing every
transition weight x to —x. If A’ is a LimInfAvg-automaton then A" is a LimSupAvg-automaton,
and vice versa. Observe that for every word w, we have A'(w) = —A”(w). Now, we shall
thus check if there exists a word w, such that A" (w) > 0.

Since for every word w, we have that A”(w) > 0, there cannot be a reachable cycle in A"
whose average value is negative. Otherwise, some run would have achieved a negative value,
and as the nondeterminism of A” is resolved with inf, some word would have been mapped by
A’ to a negative value. Yet, there might be in A” transitions with negative weights. Thanks
to Johnson's algorithm [Joh77] (see Theorem 5.8.4 and the remark after it), we can construct
from A” in polynomial time an automaton A" that resolves the nondeterminism as .4” and is
equivalent to it, but has no negative transition weights. It is worth emphasizing that since
the value of the automaton on a word is defined by the limit of the average values of forever
growing prefixes, the bounded initial and final values that result from Johnson's algorithm
have no influence.

Finally, we construct from A" the automaton B (of the same type), by changing every strictly
positive transition weight to 1. So, B has transitions weighted over {0,1}. Observe that
while A" and B need not be equivalent, for every word w, we have A" (w) > 0 if and only if
B(w) > 0. This is because z - B(w) < A" (w) <y - B(w), where x and y are the minimal
and maximal strictly positive transition weights of A", respectively. Further, we claim that B
expresses the constant function 0 if and only if the distance automaton D, which is a copy of
B where all states are accepting, is limited.

If D is limited, then by Theorem 5.8.6 there is a bound b, such that for every infinite word w,
there exists an infinite run of D (and of B) over w whose summation of weights is bounded
by b. Thus, the value of B (i.e., LimInfAvg or LimSupAvg) for this run is 0.

If D is not limited, observe that the existence of an infinite word on which all runs of D are
of unbounded value does not suffice to conclude. Indeed, the run that has weight 1 only in
positions {2" | n € N} has a limit-average of 0. Nevertheless, we are able to provide a word w,
such that the LimInfAvg and LimSupAvg values of every run of B over w are strictly positive.
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By Theorem 5.8.7, there exists a finite nonempty word uy, such that D(u;) = 1 and the
possible runs of D over u lead to a set of states .S;, such that the distance automaton D*
(defined as D but where S is the set of initial states) is of unlimited distance. We can then
apply Theorem 5.8.7 on D%, getting a finite nonempty word us, such that D% (uy) = 1,
and the runs of D' over us lead to a set Sy, such that D2 is of unlimited distance, and so
on. Since there are finitely many subsets of states of D, we reach a set S, such that there
exists j < ¢ with S; = Sy. We define the infinite word w = wy - ug - - - uj - (wjp1 - Ujpo - - - up)®.
Let m be the maximum length of w;, for i € [1,/]. Next, we show that the LimInfAvg and
LimSupAvg values of every run of D (and thus the value of 5) over w is at least L.

Indeed, consider any infinite run p of D over w. At position |u;|, the summation of weights
of p is at least 1, so the average is at least % Since the run p at this position is in some
state ¢ € S; and D% (uy) = 1, the continuation until position |ujus| will go through at
least another 1-valued weight, having the average at position |ujus| is at least % Then, for
every position k and natural number i € N such that |uy - - - w;| <k < |uy - uiy1], we have

% <<= % Therefore, as ¢ goes to infinity, the running average of weights of p
converges to % O

5.9 Safety of Quantitative Automata

For studying the safety of automata, we build on the alternative characterizations of quantitative
safety through threshold safety and continuity, as discussed in Sections 5.3.1 and 5.3.2. The
characterizations for totally-ordered value domains hold in particular for properties expressed
by quantitative automata. First, we extend the notion of safety from properties to value
functions, allowing us to characterize families of safe quantitative automata. Finally, we
provide algorithms to construct the safety closure of a given automaton A and to decide
whether A is safe.

5.9.1 Safety of Value Functions

In this section, we focus on the value functions of quantitative automata, which operate on the
value domain of real numbers. In particular, we carry the definitions of safety, co-safety, and
discounting to value functions. This allows us to characterize safe (resp. co-safe, discounting)
value functions as those for which all automata with this value function are safe (resp. co-safe,
discounting). Moreover, we characterize discounting value functions as those that are safe
and co-safe.

Recall that we consider the value functions of quantitative automata to be bounded from
below and above for every finite input domain V' C Q. As the set V¥ can be taken as a
Cantor space, just like 3, we can carry the notions of safety, co-safety, and discounting from
properties to value functions.

Definition 5.9.1 (Safety and co-safety of value functions). A value function Val : Q¥ — R
is safe when for every finite subset V' C Q, infinite sequence x € V¥, and value v € R, if
Val(z) < v then there exists a finite prefix z < x such that sup,cy. Val(zy) < v. Similarly, a
value function Val : Q“ — R is co-safe when for every finite subset V' C Q, infinite sequence
x € V¥, and value v € R, if Val(x) > v then there exists a finite prefix z < x such that
inf,ecyw Val(zy) > v.
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Definition 5.9.2 (Discounting value function). A value function Val : Q* — R is discounting
when for every finite subset V' C Q and every € > 0 there exists n € N such that for every
x € V" and y,y € V¥ we have |Val(zy) — Val(xy/)| < e.

We remark that by Theorems 5.4.5 and 5.4.8, the value function Inf is safe and Sup is co-safe;
moreover, DSum is discounting by definition. Now, we characterize the safety (resp. co-safety)
of a given value function by the safety (resp. co-safety) of the automata family it defines. We
emphasize that the proofs of the two statements are not dual. In particular, exhibiting a finite
set of weights that falsifies the safety of a value function from a nonsafe automaton requires a
compactness argument.

Theorem 5.9.3. Consider a value function Val. All Val-automata are safe (resp. co-safe) iff
Val is safe (resp. co-safe).

Proof. We show the case of safety and co-safety separately as they are not symmetric due to
nondeterminism of automata.

Co-safety. One direction is immediate, by constructing a deterministic automaton that
expresses the value function itself: If Val is not co-safe then there exists some finite set V' C Q
of weights with respect to which it is not co-safe. Consider the deterministic Val-automaton
over the alphabet V' with a single state and a self loop with weight v € V' over every letter
v € V, that is, the letters coincide with the weights. Then, the automaton simply expresses
Val and is therefore not co-safe.

For the other direction, consider a co-safe value function Val, a Val-automaton A over an
alphabet > with a set of weights V' C Q, a value v € R, and a word w, such that A(w) > v.
We need to show that there exists a prefix u < w such that inf,/cxe A(uw’) > v. Let p be
some run of A on w such that Val(y(p)) > v. (Observe that such a run exists, since the value
domain is totally ordered, as the supremum of runs that are not strictly bigger than v is also
not bigger than v.)

Then, by the co-safety of Val, there exists a prefix p’ of p, such that inf,/cyw Val(y(p')z") > v.
Let u < w be the prefix of w of length |p'|. By the completeness of A, for every word
w” € X there exists a run p'p” over uw”, and by the above we have Val(y(p/p")) > v.
Since A(uw”) > Val(y(p'p")), it follows that inf,csw A(uw’) > infepe Val(y(p)z’) > v,

as required.

Safety. One direction is immediate: if the value function is not safe, we get a nonsafe
automaton by constructing a deterministic automaton that expresses the value function itself,
as detailed in the case of co-safety.

As for the other direction, consider a nonsafe Val-automaton A over an alphabet X with a
finite set V' C Q of weights. Then, there exist a value v € R and a word w with A(w) < v,
such that for every prefix u < w, we have sup,, 5. A(uw’) > v. Let v € (A(w),v) be a
value strictly between A(w) and v. For every prefix u < w of length i > 0, let w; € X* be an
infinite word and r; a run of A on ww;, such that the value of r; is at least v'. Such a run
exists since for all u < w, the supremum of runs on uw’, where w' € 3¢, is larger than v'.

Let r' be a run of A on w, constructed in the spirit of Kénig's lemma by inductively adding
transitions that appear in infinitely many runs r;. That is, the first transition ¢y, on w|[0] in 7’/
is chosen such that ¢ is the first transition of r; for infinitely many ¢ € N. Then ¢; on w[1],
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is chosen such that ¢, - t; is the prefix of r; for infinitely many ¢ € N, and so on. Let p be
the sequence of weights induced by . Observe that Val(p) < A(w) < v'. Now, every prefix
1 < p of length 7 is also a prefix of the sequence p; of weights induced by the run r;, and by
the above construction, we have Val(p;) > v'. Thus, while Val(p) < v/, for every prefix n < p,
we have sup ¢y Val(np') > o', implying that Val is not safe. O

Recall that a value function together with a finite set V' C Q of weights can be seen as a
quantitative property over the finite alphabet > = V. Then, thanks to Theorem 5.3.27, we
can characterize discounting value functions as those that are both safe and co-safe.

Corollary 5.9.4. A value function is discounting iff it is safe and co-safe.

As a consequence of Theorems 5.9.3 and 5.9.4, we obtain the following.

Corollary 5.9.5. All Val-automata are discounting iff Val is discounting.

5.9.2 Deciding Safety of Quantitative Automata

We now switch our focus from generic value functions to families of quantitative automata
defined by the common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg,
and DSum. As remarked in Section 5.9.1, the value functions Inf and DSum are safe, thus all
Inf-automata and DSum-automata express a safety property by Theorem 5.9.3. Below, we
focus on the remaining value functions of interest.

Given a Val-automaton A where Val is one of the nonsafe value functions above, we describe
(i) a construction of an automaton that expresses the safety closure of A, and (ii) an algorithm
to decide whether A is safe. For these value functions, we can construct the safety closure as
an Inf-automaton.

Theorem 5.9.6. Let Val € {Sup,LimInf, LimSup, LimInfAvg, LimSupAvg}. Given a Val-
automaton A, we can construct in PTIME an Inf-automaton A’ that expresses its safety
closure. Moreover, if A is deterministic, then so is A’.

Proof. Let A = (3,Q,t,0) be a Val-automaton as above, where Val # Sup. We construct an
Inf-automaton A’ = (3, @, ¢, 0") that expresses the safety closure of A by only changing the
weights of A's transitions, as follows. For every state ¢ € (), we compute in PTIME, due to
Theorem 5.7.2, the top value T, of the automaton A?. For every state p € () and letter o € ¥,
we define the transition function ¢'(p,0) = {(T,,q) | 3z € Q: (z,q) € §(p,0)}. Notice that
A and A’ are identical except for their transition weights, therefore A’ is deterministic if A is.

Consider a run p of A'. Let i € N be the number of transitions before p reaches its ultimate
strongly connected component, i.e., the one p stays indefinitely. By construction of A’, the
sequence y(p) of weights is nonincreasing, and for all j > ¢ we have that v(p[i]) = v(p[j])-
Again, by construction, the value v(p[j]) is the maximal value A can achieve after the first
j steps of p. Moreover, since v(p) is nonincreasing, it is the minimal value among the
prefixes of v(p). In other words, y(p[i]) = infjensup,cp, Val(v(p.-jlp')) where R; is the
set of runs of A starting from the state reached after the finite run p[..j]. Notice that this
defines exactly the value of the safety closure for the run p. Therefore, it is easy to see that
A'(w) = inf, 4, sUpyesw A(uw’) for all w € 3¢

For Val = Sup, we use Theorem 5.7.1 to first translate A to a LimlInf- or LimSup-automaton,
which preserves determinism as needed. O
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Figure 5.2: A Sup-automaton A together with its safety closure B3 given as an Inf-automaton,
which cannot be expressed by a Sup-automaton.

For the prefix-independent value functions we study, the safety-closure automaton from the
proof of Theorem 5.9.6 can be taken as a deterministic automaton with the same value
function.

Theorem 5.9.7. Let Val € {LimInf, LimSup, LimInfAvg, LimSupAvg}. Given a Val-automaton
A, we can construct in PTIME a Val-automaton that expresses its safety closure and can be
determinized in EXPTIME.

Proof. Let A be a Val-automaton. We construct its safety closure A’ as an Inf-automaton
in polynomial time, as in the proof of Theorem 5.9.6. Observe that, by construction, every
run p of A’ yields a nonincreasing weight sequence for which there exists i € N such that
for all 7 > i we have v(p[i]) = v(p[j]) = Inf(7(p)). Then, to construct a Val-automaton
that is equivalent to A’, we simply copy A’ and use the value function Val instead. Similarly,
to obtain a deterministic Val-automaton that is equivalent to A’, we first determinize the
Inf-automaton A’ in exponential time [KLO7, Thm. 7], and then the result can be equivalently
considered as a Val-automaton for the same reason as before. O

By contrast, this is not possible in general for Sup-automata, as Figure 5.2 witnesses.

Proposition 5.9.8. Some Sup-automaton admits no Sup-automata that expresses its safety
closure.

Proof. Consider the Sup-automaton A given in Figure 5.2. We have SafetyCl(A)(w) = 2
if w = a* or the first ¢ in w occurs before the first b in w (which may never occur),
and SafetyCl(A)(w) = 1 otherwise. Suppose towards contradiction that there is a Sup-
automaton A’ expressing SafetyCI(A). Since A’ has finitely many weights, it is sup-closed,
and A'(a”) = 2, there is a run p of A’ over a“ in which the weight 2 occurs at least once,
say at position 7. Then, every valid continuation of the finite run pl..i] over A’ is mapped to
at least 2. In particular, A’(a’0”) > 2; however, SafetyCI(A)(a’0”) = 1. O

We first prove the hardness of deciding safety by reduction from constant-function checks.

Lemma 5.9.9. Let Val € {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}. It is PSPACE-hard
to decide whether a Val-automaton is safe.

Proof. We can reduce in PTIME the problem of whether a Val-automaton A with the top
value T expresses a constant function, which is PSPACE-hard by Theorem 5.8.1, to the
problem of whether a Val-automaton A’ is safe, by adding T-weighted transitions over a fresh
alphabet letter from all states of A to a new state ¢t, which has a T-weighted self-loop over
all alphabet letters.

Indeed, if A expresses the constant function T, so does A’ and it is therefore safe. Otherwise,
A’ is not safe, as a word w over A’s alphabet for which A(w) # T also has a value smaller
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than T by A’, while every prefix of it can be concatenated with a word that starts with the
fresh letter, having the value T. ]

For automata classes with PSPACE equivalence check, a matching upper bound is straightfor-
ward by comparing the given automaton and its safety-closure automaton.

Theorem 5.9.10. Deciding whether a Sup-, LimlInf-, or LimSup-automaton expresses a safety
property is PSPACE-complete.

Proof. PSPACE-hardness is shown in Theorem 5.9.9. For the upper bound, we construct in
PTIME, due to Theorem 5.9.7, the safety-closure automaton A’ of the given automaton A,
and then check in PSPACE if A = A’. Notice that equivalence-check is in PSPACE for these
value functions in general [CDH10b, Thm. 4. O

On the other hand, even though equivalence of limit-average automata is undecidable [DDG™10,
CDE*10, HPPR18]., we are able to provide a decision procedure using as a subroutine our
algorithm to check whether a given limit-average automaton expresses a constant function (see
Theorem 5.8.8). The key idea is to construct a limit-average automaton that expresses the
constant function 0 iff the original automaton is safe. Our approach involves the determinization
of the safety-closure automaton, resulting in an EXPSPACE complexity. Let us start with a
lemma on checking the equivalence of limit-average automata.

Lemma 5.9.11. Let Val € {LimInfAvg, LimSupAvg} and consider two Val-automata A and
B. If B is deterministic and each of its runs yields an eventually-constant weight sequence,
deciding whether A and B are equivalent is in PSPACE.

Proof. We construct C by taking the product between A and B where the weight of a transition
in C is obtained by subtracting the weight of the corresponding transition in B from that in A.
We claim that A and B are equivalent iff C expresses the constant function 0. Indeed, consider
a word w € X¥. By definition, A(w) = B(w) iff sup, ,cpa{Val(v(pa))} — Val(v(ps)) =0
where pg is the unique run of B on w. Equivalently sup,, ,cga{Val(v(p.4)) — Val(v(ps))} = 0.
We claim that Val(y(p4)) — Val(v(pg)) = Val(v(pa) — v(ps)) where v(p4) — v(pg) is the
sequence obtained by taking the elementwise difference of the weight sequences produced by
the runs p4 and pg. This claim does not hold for arbitrary sequences of weights, but it does
hold if the sequence of weights (pp) is eventually constant and Val is prefix independent. As
the weight sequence of pg is eventually constant by our initial assumption and Val is prefix
independent, we can subtract elementwise from the weight sequence of each run of A that of 5.

Thus, we get sup,, , cga{Val(v(pa)) —Val(v(ps))} = 0 iff sup, ,cpa{Val(v(pa) —7(p5))} = 0.
Observe that, by construction, each run of C produces a weight sequence that corresponds to

this difference. Then, sup, ,cpa{Val(7(pa) —v(p5))} = 0 iff sup,.cpe {Val(v(pc))} = 0 iff
C(w) = 0. Finally, to check the equivalence of .4 and B, we can decide by Theorems 5.7.2

and 5.8.8 if C(w) = 0 for all w € ¥¥. O

Using the lemma above, we obtain an algorithm to check whether a given limit-average
automaton is safe.

Theorem 5.9.12. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a
safety property is in EXPSPACE.
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Proof. Let Val € {LimInfAvg, LimSupAvg} and let A be a Val-automaton. We construct
the safety-closure automaton of A whose weight sequences are eventually constant as in
Theorem 5.9.6 and transform it into a deterministic Val-automaton B as in the proof of
Theorem 5.9.7. To check the safety of A, we can decide by Theorem 5.9.11 whether A and
B are equivalent in PSPACE since B is deterministic and its weight sequences are eventually
constant by construction. Because the construction of B might cause up to an exponential
size blow-up, the decision procedure for checking the safety of limit-average automata is in
EXPSPACE. [l

5.10 Liveness of Quantitative Automata

In this section, we provide algorithms to check liveness of quantitative automata, and to
decompose them into a safety automaton and a liveness automaton. We build on the alternative
characterizations of quantitative liveness, as discussed in Section 5.6.2. In particular, our
algorithms take advantage of the fact that liveness and top liveness coincide for sup-closed
properties (Theorem 5.6.21).

5.10.1 Deciding Liveness of Quantitative Automata

Let us start with the problem of checking whether a quantitative automaton is live. We first
provide a hardness result by reduction from constant-function checks.

Lemma 5.10.1. Let Val € {Inf,Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. De-
ciding whether a Val-automaton A is live is PSPACE-hard.

Proof. Let Val € {Inf, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum} be a value function.
Consider a Val-automaton A’ that is constructed along the proofs of Theorem 5.8.1, in
which we show that the constant-function check is PSPACE-hard. Observe that A’ either
(i) expresses the constant function T, and is therefore live; or (ii) has a value T on some
word w and a value z < T on some word w’, where there is a prefix u of w’, such that for
every infinite word @, we have A'(uw) = z, implying that A" is not live. Therefore, the
PSPACE-hardness of the constant-function check extends to liveness-check.

The proof for Val = Sup goes by reduction from the constant-function check for Inf-automata,
which is PSPACE-hard by Theorem 5.8.1. Given an Inf-automaton A over an alphabet
Y. = {a, b}, we construct in PTIME a Sup-automaton A’ such that A is constant iff A’ is live.

First, using Theorem 5.7.1, we transform A into an equivalent Inf-automaton B = (¥, @3, ¢, 05)
whose runs are nonincreasing. Let Sg = {Si,..., Sk} be the set of strongly connected
components of B. Note that, by construction, each S € S (for which there is a transition
whose target is in .S) is associated with a weight x such that all transitions whose target is in
S has weight z, which we denote by v5(S) = x with a slight abuse of notation. Notice that
v5(S) is undefined when S has no incoming transitions, which may happen if S is a trivial
strongly connected component containing the initial or an unreachable state.

We now construct from B an Inf-automaton C. The automaton C is a copy of B over the
alphabet ¥ = 3 U {#} with two additional states Q)¢ = Qg W {qo, ¢1 }, modified transition
weights, and some additional transitions. The transition function ¢ is defined as follows:

= For every transition (¢, 0, x,p) € dp with © > Ty, we have (q,0,1,p) € dc.
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= For every transition (¢, 0, x,p) € dp with = < Tz, we have (¢,0,0,p) € dc.
» For every 0 € X U {#}, we have (¢1,0,1,¢1) € d¢ and (qo, 0,0, qo) € Oc.

= For every strongly connected component S € Sg with y5(S) > Ty and for every g € S,
we have (q7 #7 17 (11> S 5C-

= For every strongly connected component S € Sp with v5(S) < Ty and for every g € S,
we have (q7 #7()’ QO) S 5C-

Notice that (i) we do not add transitions to go or g; from strongly connected components for
which the 75 value is undefined, and (ii) by construction, the strongly connected components
of C are given by the set S¢ = {S1,..., Sk, 1o, T1 } where, for j € {0,1}, we have T; = {¢;}.
Moreover, for every S € S¢, we have 4¢(S) =1if S =T; or S € Sg with v5(T) > Tp, and
7¢(S) = 0 otherwise.

We claim that A is constant iff C is constant. Since A and B are equivalent, we show that B
is constant iff C is constant.

Assume B is constant, i.e., B(w) = T for all w € ¥*. Let w be a word with no occurrence of
#. There is a run of B over w such that every strongly connected component S € Sp it visits
satisfies v5(S) > Tp. By construction, C has a run over w following the same sequence of
states, and thus the same strongly connected components, which satisfy 75(S) = 1. Therefore,
C(w) = 1. Now, let w be a word with an occurrence of #, i.e., w = u#w’ for some u € X*
and w' € ¥%. Since B is constant and an Inf-automaton, there is a finite run of B over u
that always stays in strongly connected components that are weighted at least Tz. Then,
C has a finite run over u staying only in 1-weighted components, reaching the 1-weighted
bottom component T after reading u#, and thus C(w) = 1. Therefore, C is also constant.

Assume B is not constant. Then, there exists wy, ws € 3¢ such that B(w,) < B(wy) = Tp.
By similar arguments as above, we have that C(w;) = 1. Moreover, all runs of B over w;
ultimately stay in a strongly connected component for which the 5 value is strictly less than
Tg. Again, similarly as above, each of these runs correspond to a run of C over wy, and each
corresponding run ultimately stays in a strongly connected component for which the ~¢ value
is 0, and thus C(w;) = 0. Therefore, C is also not constant.

Now, we construct from the Inf-automaton C a Sup-automaton A’. The automaton A’ is
a copy of C with the only difference being the transition weights: for every (¢, 0, z,p) € dc,
we have (q,0,2',p) € 4 where 2’ is the minimum over the values ~¢(S) such that the
strongly connected component S is reachable from the state p. In other words, the weight of
a transition in A’ is 0 if some run starting from the target state can achieve the value 0 in C,
and it is 1 otherwise.

We claim that C expresses SafetyCIl(.A’), which means C is constant iff A’ is live, thanks to
Theorems 5.6.21 and 5.7.2. First, observe that (i) S¢ = S, (ii) for every S, 5" € S, if S’ is
reachable from S and v¢(S) = 0, then v¢(S") = v (S") =0, and (iii) for every S, 5" € S¢, if
S’ is reachable from S and 7¢(S") = 1, then ¢(S) = 1.

Consider a word w € %%, such that C(w) = 0. We want to show that SafetyCI(A")(w) = 0,
i.e., there is a prefix u < w such that A'(uw’) = 0 for all w’ € ¥4,. Since C(w) = 0, every
run of C over w ultimately stays in a strongly connected component S such that v¢(S) = 0.
As A’ only differs from C in transition weights, every run of A over w follows the same states
and the strongly connected components. Notice that whenever such a run visits a strongly
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connected component 7" with v¢(T") = 1, we have 4 (T) = 0 by construction (as the same
run ultimately reaches a component S with 7¢(S) = 0). Moreover, due to observation (ii)
above, every run of A’ over w ultimately stays in a strongly connected component S such
that v.4/(S) = 0. Then, by construction, there is a prefix u < w such that A’(uw’) = 0 for all
w' € 3y

Consider a word w € X% such that C(w) = 1. We want to show that SafetyCI(A")(w) = 1,
i.e., for every prefix u < w we have A'(uw’) =1 for some w’ € 3. Since C(w) = 1, some
run of C over w ultimately stays in a strongly connected component S such that 7¢(S) = 1.
By construction of C, the bottom strongly connected component T} is reachable from any
such component S. Recall that A’ only differs from C in transition weights. Then, every run p
of A" over w follows the same states and the strongly connected components as C, and thus
the component T is reachable from any component visited during p by reading #. Moreover,
since T} is a bottom strongly connected component with vo(77) = 1, we have v (77) = 1.
Then, for every prefix u < w we have A'(uw’) = 1 for w’ = #~. O

Recall that, thanks to Theorems 5.6.21 and 5.7.2, an automaton A expresses a liveness property
iff SafetyCI(A) expresses the constant function T. For automata classes whose safety closure
can be expressed as Inf-automata, we provide a matching upper bound by simply checking the
universality of the safety closure with respect to its top value. For DSum-automata, whose
universality problem is open, our solution is based on our constant-function-check algorithm
(see Theorem 5.8.3).

Theorem 5.10.2. Deciding whether an Inf-, Sup-, LimInf-, LimSup-, LimInfAvg-, LimSupAvg-
or DSum-automaton expresses a liveness property is PSPACE-complete.

Proof. PSPACE-hardness is shown in Theorem 5.10.1. Let A be a Val-automaton and let T
be its top value. Recall that liveness and top liveness coincide for sup-closed properties by
Theorem 5.6.21. As the considered value functions define sup-closed properties, as proved
in Theorem 5.7.2, we reduce the statement to checking whether SafetyCI(A) expresses the
constant function T.

For Val € {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}, we first construct in PTIME an
Inf-automaton B expressing the safety closure of A thanks to Theorem 5.9.6. Then, we decide
in PSPACE whether B is equivalent to the constant function T, thanks to Theorems 5.7.2
and 5.8.2 For Val = DSum, the safety closure of A is A itself, as DSum is a discounting
value function due to Theorems 5.9.3 and 5.9.4. Hence, we can decide in PSPACE whether A
expresses the constant function T, thanks to Theorems 5.7.2 and 5.8.3. ]

5.10.2 Safety-Liveness Decompositions of Quantitative Automata

We turn to safety-liveness decomposition, and start with the simple case of Inf- and DSum-
automata, which are guaranteed to be safe. Their decomposition thus consists of only
generating a liveness component, which can simply express a constant function that is at
least as high as the maximal possible value of the original automaton A. Assuming that the
maximal transition weight of A is fixed, it can be done in constant time.

Considering Sup-automata, recall that their safety closure might not be expressible by Sup-
automata (Theorem 5.9.8). Therefore, our decomposition of deterministic Sup-automata
takes the safety component as an Inf-automaton. The key idea is to copy the state space of
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the original automaton and manipulate the transition weights depending on how they compare
with the safety-closure automaton.

Theorem 5.10.3. Given a deterministic Sup-automaton A, we can construct in PTIME a
deterministic safety Inf-automaton BB and a deterministic liveness Sup-automaton C, such that
A(w) = min(B(w),C(w)) for every infinite word w € ¥¥.

Proof. Given a deterministic Sup-automaton, we can compute in PTIME, due to Theo-
rem 5.7.1, an equivalent deterministic Sup-automaton A for which every run yields a nonde-
creasing weight sequence. We first provide the construction of the automata B and C, then
show that they decompose A, and finally prove that B is safe and C is live.

By Theorem 5.9.6, we can construct in PTIME an Inf-automaton B expressing the safety
closure of A, where every run of B yields a nonincreasing weight sequence. Observe that B is
safe by construction, and that the structures of A and B only differ on the weights appearing
on transitions, where each transition weight in B is the maximal value that A can achieve
after taking this transition. In particular, B is deterministic because A is so.

Then, we construct the deterministic Sup-automaton C by modifying the weights of A as
follows. For every transition, if the weight of the corresponding transitions in A and B are
the same, then the weight in C is defined as the top value of A, denoted by T here after.
Otherwise, the weight in C is defined as the weight of the corresponding transition in A.

Next, we prove that A(w) = min(B(w),C(w)) for every word w. Let pu,pg, pc be the
respective runs of A, B, and C on w. There are the following two cases.

= If the sequences of weights v(p4) and (ps) never agree, i.e., for every i € N we have
v(pali]) < v(pgli]), then y(pcli]) = v(pali]) for all i € N by the construction of C. We
thus get A(w) = C(w) < B(w), so A(w) = min(B(w) < C(w)), as required.

= Otherwise, the sequences of weights (p.4) and v(pg) agree on at least one position, i.e.,
there exists ¢ € N such that v(pli]) = v(ps[i]). Since the run of A is guaranteed to
yield nondecreasing weights and B is its safety closure, whose runs are nonincreasing, we
have v(palj]) = v(pglj]) for all j > i. Additionally, v(pc[i]) = T by the construction
of C. We thus get A(w) = B(w) < C(w), so A(w) = min(B(w) < C(w)), as required.

Finally, we show that C is live. By Theorem 5.6.21, it is sufficient to show that for every
reachable state ¢ of C, there exists a run starting from ¢ that visits a transition weighted by
T. Suppose towards contradiction that for some state ¢, there is no such run. Recall that the
state spaces and transitions of A, B, and C are the same. Moreover, observe that a transition
weight in C is T if and only if the corresponding transitions in .4 and B have the same weight.

If no transition with weight T is reachable from the state ¢, then by the construction of
C, for every run p4 of A starting from ¢ and the corresponding run pg of B, we have
v(pali]) < ~v(psli]) for all i € N. Recall that each transition weight in B is the maximal
value A can achieve after taking this transition, and that for every finite word u over which A
reaches ¢, we have sup,, A(uw’) = B(uw').

Hence, by the sup-closedness of A and the fact that the sequences of weights in its runs are
nondecreasing, for each prefix r4 of p4 and the corresponding prefix rz of pg, there is an
infinite continuation p’4 for 7 4 such that the corresponding infinite continuation pj for rz gives
Sup(y(rap'y)) = Inf(~(rgp)). Note that this holds only if the two weight sequences have
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the same value after some finite prefix, in which case the weight of C is defined as T. Hence,
some run of C from § reaches a transition weighted T, which yields a contradiction. O

Using the same idea, but with a more involved reasoning, we show a safety-liveness decompo-
sition for deterministic LimInf- and LimSup-automata.

Theorem 5.10.4. Let Val € {LimInf,LimSup}. Given a deterministic Val-automaton A, we
can construct in PTIME a deterministic safety Val-automaton B and a deterministic liveness
Val-automaton C, such that A(w) = min(B(w),C(w)) for every infinite word w € .

Proof. Consider a deterministic Val-automaton A. We construct B and C analogously to their
construction in the proof of Theorem 5.10.3, with the only difference that we use Theorem 5.9.7
to construct B as a Val-automaton rather than an Inf-automaton. Once again, the structures
of A and B only differ on the weights appearing on transitions, and B is deterministic because

A is so.

We first show that 3 and C decompose .4, and then prove that C is live. (Note that B is safe
by construction.)

Given an infinite word w, let p4, ps, pc be the respective runs of A, B, and C on w. There
are the following three cases.

= |If the sequences of weights v(p4) and ~y(ps) agree only on finitely many positions, i.e.,
there exists ¢ € N such that y(pa[j]) < v(psl[j]) for all j > i, then by the construction
of C, we have v(pc[j]) = v(palj]) for all j > i. Thus, A(w) =C(w) < B(w).

= |If the sequences of weights (p4) and v(pg) disagree only on finitely many positions, i.e.,
there exists ¢ € N such that v(p.a[j]) = v(ps[j]) for all j > i, then by the construction
of C, we have y(p¢c[j]) = T for all 7 > i. Thus, A(w) = B(w) < C(w).

= Otherwise the sequences of weights (p.4) and y(pi) both agree and disagree on infinitely
many positions, i.e., for every i € N there exist j, k > i such that v(palj]) < v(pslj])
and y(palk]) = v(pslk]). For Val = LimInf, we exhibit an infinite sequence of positions
{z; }ien such that y(palzi]) = v(pelzi]) < v(pslz;]) for all i € N. The first consequence
is that A(w) < B(w). The second consequence is that, by the construction of C, if
A(w) < T then C(w) < T, which implies that A(w) = C(w). For Val = LimSup,
recall that every run of B yields a nonincreasing weight sequence. In particular, there
exists k € N such that v(pglk]) = v(ps(¢)) = B(w) for all £ > k. Then, we exhibit an
infinite sequence of positions {y; };en such that v(paly:|) = B(v(ps[vi])) = B(w) and
v(pelyi]) = T for all i € N. Consequently, C(w) = T and A(w) = B(w).

In either case, A(w) = min(B(w),C(w)).

Next, we show that C is live using the same argument as in the proof of Theorem 5.10.3: On the
one hand, every word w for which A(w) = B(w) trivially satisfies the liveness condition as it
implies C(w) = T. On the other hand, by Theorem 5.7.2 every word w for which A(w) < B(w)
is such that each finite prefix © < w admits a continuation w’ satisfying A(uw’) = B(uw’).
Hence, sup,,, C(uw’) = T for all u < w, implying the liveness condition. O

Finally, we provide a safety-liveness decomposition for nondeterministic automata with the
prefix-independent value functions we consider.
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Theorem 5.10.5. Let Val € {LimSup, LimInf, LimInfAvg, LimSupAvg}. Given a Val-automaton
A, we can construct in PTIME a safety Val-automaton B and a liveness Val-automaton C,
such that A(w) = min(B(w),C(w)) for every infinite word w € 3¥.

Proof. Let Q = {q1,...,q,} be the set of states of A, let A4 be its transition relation, 74
its weight function, and X 4 its finite set of weights. We identify in PTIME the strongly
connected components Q1 W Qs W ... W Q,, of A. For all k € {1,...,m}, we compute in
PTIME, thanks to Theorem 5.7.2, the top value T, of the automaton A? for any ¢ € Q.
Note that the choice of ¢ € (), does not change T since the considered value function Val is
prefix independent. Additionally, for all k& € {1,...,m}, we compute the highest value O
achievable by some simple cycle 7, within Q. To clarify, we emphasize that T, > O holds
in general, and T, > O when all runs starting in (), that achieve the top value T eventually
leave the component ().

We explain briefly how O} and 7 are computed in PTIME. The value Oy is the top value
of the automaton consisting of (J; and a sink absorbing all outgoing edges weighted with
min X 4 — 1. As discussed in the proof of [CDH10b, Thm. 3], the top value of a Val-automaton
is attainable by a lasso run. Due to the properties of Val, this lasso run can be transformed
into a simple cycle, i.e., a cycle without inner cycles. Because Val is prefix independent, the
path reaching the cycle of the lasso run can be removed to obtain a cycle run with the same
value. Also, if the cycle p = p1p2p3 has an inner cycle py, then p can be shortened by keeping
the cycle achieving the highest value between p; and p;ps. This proves that O is attainable
by a simple-cycle run.

Now, we briefly describe the computation of © and 7. First, we consider Val € {LimInf, LimSup}.
To compute ©y, we first construct a Val-automaton A, that is a copy of the strongly con-
nected component (. extended to be total by adding a sink state with a self loop of weight
min X 4 — 1. Then, we compute the top value of Ay, which is by definition ©,. To compute
7, We first construct a graph Gy which is obtained from the underlying graph of A; by
removing all the edges corresponding to transitions of .4; whose weights are smaller than Oy

if Val = LimInf or greater than ©y if Val = LimSup. Then, we compute a cycle in G}, using
depth-first search and assign it to .

Second, we consider Val € {LimInfAvg, LimSupAvg}. To compute ©, we first construct A,
as above, take the underlying directed graph of A;, and multiply its edge weights by —1.
Then, we use Karp's (dynamic programming) algorithm [Kar78] to compute the minimum
cycle mean in this directed graph, which gives us the value —©;. To compute 7, it suffices
to appropriately maintain the backtracking pointers in Karp's algorithm [CM17]. Recall that
the top value of an automaton can be computed in PTIME thanks to Theorem 5.7.2, and
note that the constructions described above are also in PTIME.

We define the set of states of C as P = {p1,p}, ..., pn, P, 01}, in particular |P| = 2|Q| + 1.
In the following, we define the transition relation Az of C. The states {p; | 1 < i < n}
are used to copy A, i.e., (p;,0,p;) € Ac if and only if (¢;,0,q;) € A4 Additionally, for
all k € {1,...,m}, if Ty = Oy then for all transitions of the simple cycle 7, of the form
(¢i,0,q5) € Aa, we have (p},0,p;) € Ac and (p;, 0,p)) € Ac. Finally, for all p; and o, we
have (p},0,p1) € Ac¢ and (p1,0,p1) € Ac. Now, we define the weight function 7 of C.
For all transitions of the form ¢t = (p;,0,p;) € Ac, we have y¢(t) = va(q;, 0,q;). For all
transitions of the from t = (p, o, p’) withp € P\ {p.} and p’ € {p; | 1 <i < n}, we have
ve(t) = T 4. Finally, v¢(p1,0,p1) = min X 4 for all 0. An example is given in Figure 5.3.
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Figure 5.3: A nondeterministic LimInfAvg-automaton A and its safety-liveness decomposition
into LimInfAvg-automata B and C, as presented in the proof of Theorem 5.10.5.

Next, we prove that C is live. The key argument is that, for each component @), for which
Tk = Oy, the automaton C provides a continuation leading to achieve the highest weight of A.
Recall that liveness and top liveness coincide for sup-closed properties by Theorem 5.6.21. As
the considered value function Val defines sup-closed properties, as proved in Theorem 5.7.2,
the liveness of C reduces to checking whether SafetyCI(C) expresses the constant function
T 4. In fact, by construction, all finite runs ending in P\ {p,} admit a continuation leading
to achieve T 4. Additionally, for all finite runs ending in p,, there is another run over the
same word that follows the states of .A. Hence, the safety closure of C maps every words to
T 4, implying the liveness of C.

By Theorem 5.9.7, we can construct in PTIME a Val-automaton B expressing the safety
closure of A. We prove that the automata B and C yield a safety-liveness decomposition of
A. For all w € ¥¢, if there is a run of A over w of the form 77}’ for some finite run 7 in A,
then Ty, = B(w) = A(w) < C(w) = T 4, otherwise A(w) = C(w). Since A(w) < B(w) by
construction, we have A(w) = min(B(w),C(w)), for all w € 3¢,

Finally, let us note that the liveness component C constructed here may differ from the liveness
component ¥ of the decomposition in Theorem 5.6.13. To construct C efficiently, we only take
into account one simple cycle 73, that achieves the value ©; within each strongly connected
component S,. However, there may be many cycles within Sy achieving ©y, which would
need to be taken into account to express V. O

Nondeterministic Sup-automata can be handled as LimInf- or LimSup-automata (Theo-
rem 5.7.1) and decomposed accordingly. For deterministic automata, the decomposition
in Theorem 5.10.5 yields a deterministic safety component, but its liveness component may
be nondeterminizable. Whether deterministic LimInfAvg- and LimSupAvg-automata can be
decomposed into deterministic automata remains open.

5.11 Conclusion

We presented a generalization of safety and liveness that lifts the safety-progress hierarchy to
the quantitative setting of [CDH10b] while preserving major desirable features of the boolean
setting such as the safety-liveness decomposition and connections to topology. Then, we
instantiated our framework with the specific classes of quantitative properties expressed by
automata.
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Monitorability identifies a boundary separating properties that can be verified or falsified from
a finite number of observations, from those that cannot. Safety-liveness and co-safety-co-
liveness decompositions allow us separate, for an individual property, monitorable parts from
nonmonitorable parts. The larger the monitorable parts of the given property, the stronger
the decomposition. We provided the strongest known safety-liveness decomposition, which
consists of a pointwise minimum between a safe part defined by a quantitative safety closure,
and a live part which corrects for the difference.

Moreover, we studied the quantitative safety-liveness dichotomy for properties expressed by Inf-,
Sup-, LimInf-, LimSup-, LimInfAvg-, LimSupAvg-, and DSum-automata. To this end, and
solved the constant-function problem for these classes of automata. We presented automata-
theoretic constructions for the safety closure of these automata and decision procedures for
checking their safety and liveness. We proved that the value function Inf yields a class of safe
automata and DSum both safe and co-safe. For all common automata classes, we provided a
decomposition into a safe and a live component. We emphasize that the safety component of
our decomposition algorithm is the safety closure, and thus the best safe approximation of a
given automaton. We note that most of these algorithms have been recently implemented in
a tool [CHMS24, CHMS25].

We focused on quantitative automata [CDH10b] because their totally-ordered value domain
and their sup-closedness make quantitative safety and liveness behave in particularly natural
ways; a corresponding investigation of weighted automata [Sch61] remains to be done. We
left open the complexity gap in the safety check of limit-average automata, and the study of
co-safety and co-liveness for nondeterministic quantitative automata, which is not symmetric
to safety and liveness due to the nonsymmetry in resolving nondeterminism by the supremum
value of all possible runs.
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CHAPTER

QuAK: Quantitative Automata Kit

In this chapter, the following publications were re-used in full:

= Marek Chalupa, Thomas A. Henzinger, Nicolas Mazzocchi, N. Ege Sarac. QuAK:
Quantitative Automata Kit. In Leveraging Applications of Formal Methods, Verification
and Validation. Software Engineering Methodologies - 12th International Symposium,
ISoLA 2024.

» Marek Chalupa, Thomas A. Henzinger, Nicolas Mazzocchi, N. Ege Sarac. Automating
the Analysis of Quantitative Automata with QuAK. In Tools and Algorithms for the
Construction and Analysis of Systems - 31st International Conference, TACAS 2025.

6.1 Introduction

System behaviors are traditionally seen as sequences of system events, and specifications
typically categorize them as correct or incorrect without providing more detailed information.
This binary perspective has long been the cornerstone of formal verification. However, many
interesting system properties require moving beyond this view to systematically reason about
timing constraints, uncertainty, resource consumption, robustness, and more, which necessitates
a more nuanced approach to the specification, modeling, and analysis of computer systems.

Quantitative automata [CDH10b] extend standard boolean w-automata with weighted transi-
tions and a value function that accumulates an infinite sequence of weights into a single value,
which generalizes the notion of acceptance condition. The common value functions include
Inf, Sup, LimiInf, and LimSup (respectively generalizing safety, reachability, co-Biichi and
Biichi acceptance conditions), as well as DSum (discounted sum), LimInfAvg and LimSupAvg
(limit average a.k.a. mean payoff). Let us consider the quantitative automaton A given
in Figure 6.1, which models the power consumption of a device. With the value function
Inf, it maps each execution to its minimal power consumption, whereas with LimInfAvg or
LimSupAvg to its long-term average power consumption. For example, the infinite execution
(off - on)“ is mapped to 0 with the value function Inf, and to 1 with LimInfAvg or LimSupAvg.

The decision problems for boolean automata extend naturally to the quantitative setting.
A quantitative automaton A is defined to be nonempty (resp. universal) with respect
to a rational threshold v if it maps some (resp. every) infinite word w to a value at
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Figure 6.1: A nondeterministic automaton A over the alphabet ¥ = {hi, lo}, modeling
the power consumption of a device where starting with high-power mode is not reversible.
Associating with A different value functions, we can specify different aspects of its power
consumption, e.g., considering LimInfAvg, the automaton specifies the long-term average
power consumption.

least v [CDH10b]. Such problems are closely related to computing the extremal values (top or
bottom) of an automaton and have significant implications both in theory and in the practical
verification of systems. Over the past fifteen years, quantitative automata have been intensively
studied [BH14, BHO15, MO19, MO21, Bok24], with recent work focusing on monitorability
as well as safety and liveness properties [H521, HMS22, HMS23, BHMS23].

Despite these theoretical advances, no general-purpose tool for the analysis of quantitative au-
tomata existed until Quantitative Automata Kit (QuAK). Our tool QuAK supports a wide range
of automaton types—including Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg—and
implements decision procedures for fundamental problems such as nonemptiness, universality,
inclusion, equivalence, constant-check, safety, and liveness.

Related work Modeling beyond-boolean aspects of systems has been considered in sev-
eral different ways. One approach considers multi-valued truth domains instead of binary
domains [BG99, CGDO02]. Another prominent approach involves weighted automata [Sch61],
which extend classical automata by assigning each transition a numerical weight from a
semiring whose operations describe how the weights are accumulated. Tools such as Vau-
canson [LPRSO03], Vcsn [DDLS13], and Awali [LMS22] provide support for the analysis of
weighted automata. The well-established techniques for weighted automata on finite words do
not adapt well to the w-valuation monoid framework necessary for infinite words. Quantitative
automata provide a more intuitive alternative, as they are designed to generalize boolean
finite-state w-automata. See [Bok21] for more on the distinction between weighted and
quantitative automata. Another significant approach considers the interaction of digital com-
putational processes with analog physical processes, modeled using automata [AD94, Hen96]
as well as temporal logics [AH93] and implemented in tools such as UPPAAL [LPY97] and
HyTech [HH94]. Signal temporal logic [MNO4], in particular, has quantitative semantics that
allows for reasoning about the degree to which a specification is satisfied or violated, and is im-
plemented in tools such as Breach [Don10], S-TaLiRo [ALFS11], and RTAMT [NY20, YHN24].
Finally, probabilistic verification deals with systems that have inherent uncertainties, such as
random failures or probabilistic decision making. PRISM [KNP02] and STORM [DJKV17] are
widely used tools that allows for the analysis of probabilistic models like Markov chains and
Markov decision processes.

6.2 Quantitative Automata

In this section we recall quantitative automata and their decision problems. For formal
definitions, we refer the reader to Chapters 2 and 5.
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While quantitative properties define total functions from infinite words to a complete lattice,
quantitative automata define a subset of quantitative properties on totally-ordered value
domains. Informally, quantitative automata are finite-state automata with weighted edges,
where the edge weights come from a finite subset of Q. Note that we require quantitative
automata to be total (a.k.a. complete), i.e., there is an outgoing transition from every state
with each letter. The semantics of quantitative automata is largely determined by their value
function, a function from infinite sequences of rational weights Q“ to real numbers R, which
generalize the acceptance conditions of boolean automata. We consider the below value
functions over an infinite sequence = = x(x; ... of rational weights.

= Inf(z) = inf{z, | n > 0} = Sup(x) =sup{z, |n >0}

= Liminf(z) = Lim inf{z; | i >n} = LimSup(z) = dim sup{z; | i > n}
1 n—1 1 n—1

= LimInfAvg(z) = LimInf ( > xz> = LimSupAvg(z) = LimSup ( > x2>
" izo " i=o

= For a discount factor A € QN (0, 1), DSumy(z) = > Nz,

i>0

Let us consider the automaton A given in Figure 6.1. Suppose we pair it with the value function
LimSup. The word w = lo” yields a unique run with the weight sequence = = 3,2,2,2, ... for
which we have LimSup(z) = 2, therefore A(w) = 2. When a word yields multiple runs (i.e.,
the automaton is nondeterministic) we resolve the nondeterminism by taking the supremum
over the values obtained from these runs. For example, if w = lo- hi- l0”, the automaton has
infinitely many runs over w. One of these runs stay and loop at ¢3 indefinitely, resulting in a
weight sequence whose tail is 4¥, therefore A(w) = 4.

The top value of an automaton A is T 4 = sup,cs. A(w), and its bottom value is L 4 =

Quantitative Automata Problems

We describe the standard decision problems of quantitative automata as well as the problems
related to their safety and liveness. The complexity results are summarized in Table 6.1.

An automaton A is nonempty (resp. universal) with respect to a threshold v € Q iff A(w) > v
for some (resp. all) w € £“. Nonemptiness (resp. universality) is closely related to computing
an automaton'’s top value (resp. bottom value): A is nonempty (resp. universal) with respect
tov € Qiff T4 > v (resp. L4 >v). An automaton A is included in (resp. equivalent to)
an automaton B iff A(w) < B(w) (resp. A(w) = B(w)) for all w € 3¥. An automaton A is
constant iff there exists ¢ € R such that A(w) = ¢ for all w € ¥“. This problem is closely
related to safety and liveness of quantitative automata, as we discuss below.

Quantitative safety generalizes the boolean view by considering membership hypotheses in
the form of lower bound queries: a property is safe iff every wrong membership hypothesis
has a finite witness for the violation. Formally, a quantitative property @ : ¥X* — D is safe
iff for every w € ¥¢ and v € D with &(w) # v, there exists a finite prefix u < w such
that sup,, ¢y @(uw’) 2 v [HMS23]. Moreover, an automaton A is safe iff the quantitative
property defined by A is safe. Given a quantitative property @ : ¥* — D), its safety closure
is defined as SafetyCl(®)(w) = inf, <y, SUP, exe P(uw’) and is the least safety property that
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‘ H Inf ‘ Sup, LimInf, LimSup LimInfAvg, LimSupAvg ‘ DSum ‘

Nonemptiness check PTiME
Universality check PSPACE-complete Undecidable Open
Inclusion check PSPACE-complete Undecidable Open
Equivalence check PSPACE-complete Undecidable Open
Top value PTIME
computation
Safety closure
construction o) PTve o)
Safety-liveness
decomposition o(1) PTive o)
Safety check O(1) | PSPACE-complete | EXPSPACE; PSPACE-hard | O(1)
Liveness check PSPACE-complete

Constant-function
check

PSPACE-complete

Table 6.1: The complexity of performing the operations on the left column with respect to
nondeterministic automata with the value function on the top row. The decidability results
in the top five rows are shown in [KL07, CDH10b] and undecidability in [DDG*10, CDE™10,
HPPR18]. All the results in the bottom five rows are shown in [BHMS25]. All the operations
are computable in PTIME for deterministic automata.

bounds @ from above [HMS23]. As expected, a property @ is safe iff @(w) = SafetyCl(P)(w)
for all w € X, and we can compute the safety closure of an automaton A—the automaton
SafetyCl(A) that expresses the safety closure of the property defined by A. While this
characterization is useful for some classes of quantitative automata, the equivalence problem
is undecidable for LimInfAvg and LimSupAvg automata. For these, the safety problem is still
decidable by a reduction to their constant-function problem [BHMS23].

Quantitative liveness extends the membership-based view: a quantitative property @ : > — D
is live iff for every word (whose value is less than T = sup D) there exists a wrong membership
hypothesis without a finite witness for the violation. Formally, a quantitative property
& ¥ — Dis live iff for all w € ¥¢, if @(w) < T, then there exists a value v € D such that
&(w) # v and for all prefixes u < w, we have sup,, s @(uw’) > v [HMS23]. Moreover, an
automaton A is live iff the quantitative property defined by A is live. For the common classes
of quantitative automata, deciding liveness reduces to the constant-function problem: an
automaton A is live iff SafetyCI(.A) is constant [BHMS23]. Just like every boolean property
is the intersection of its safety closure and a liveness property, every quantitative property is
the pointwise minimum of its safety closure and a liveness property [HMS23]. Recently, it was
proved that all the common classes of automata can be decomposed into its safety closure
and a liveness property [BHMS25]. Consider the automaton A, its safety closure 3, and its
liveness part C as defined in Figure 6.2. In B, each strongly connected component (SCC) of
A is assigned the highest value achievable within the component, representing the greatest
among the lower bound hypotheses that cannot be refuted by any finite prefix. The liveness
part C consists of three components: the upper part is a copy of A (ensuring C can have runs
with the same value as .A); the middle part contains a T 4-weighted copy of the highest-valued
cycle in each SCC (enabling C to achieve high-valued runs when A and B agree); and the
lower part includes a sink state looping with the lowest weight of A (allowing C to “escape”
the middle part and realize a value using the upper part).
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Figure 6.2: Taking the automaton A in Figure 6.1 as a LimInfAvg automaton, the automaton
B denotes the safety closure of A and the automaton C its liveness component in the
corresponding decomposition [BHMS25].

6.3 The Tool
Let A and B be Val automata where Val € {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg},

and let v € Q be a rational number. QuAK currently supports the following operations
(whenever known to be computable):

1. Check if A is non-empty with respect to v.
2. Check if A is universal with respect to v.
3. Check if A is included in B.
4. Check if A defines a constant function.
5. Check if A defines a safety property.
6. Check if A defines a liveness property.
7. Compute the top value T of A.
8. Compute the bottom value L of A.
9. Compute the safety closure of A.
10. Compute the safety-liveness decomposition of A.

11. Construct and execute a monitor for A.

The tool is written in C++ using the standard library, and is available at https://github.
com/ista-vamos/QuAK together with detailed instructions on its usage. In this section, we
describe the automata representation, the architecture of QuAK, our antichain-based inclusion
algorithm, the witness computation for the supported operations, implementation of the
constant-function check for limit average automata, and monitoring approach for quantitative
properties.
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| top value

‘equivalence‘ ‘universality‘ ‘safetyb‘
I

‘ safety closure ‘ ‘ inclusiony

‘ bottom valuey ‘

| bottom Va|Uend,b| |constant function |
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Figure 6.3: Reductions of quantitative automata problems in QuAK. The subscript b
stands for basic (i.e., Val € {Inf,Sup, LimInf, LimSup}), /a for limit-average (i.e., Val €
{LimInfAvg, LimSupAvg}), d for deterministic, and nd for nondeterministic.

6.3.1 Automata Representation

We represent automata in a way that makes the algorithms as efficient as possible while
keeping their implementation convenient and maintainable. Here, we explain some choices we
made for this sake.

Automata objects do not have a value function because it may be useful to interpret the
same transition structure in different ways (like in Figure 6.1). The user needs to specify
the value function when a decision procedure or a construction is called on an automaton.
Moreover, each automaton contains a directed acyclic graph representing its strongly connected
components (SCCs), which is constructed once the automaton is created. Each state has a tag
representing the SCC it belongs to. Moreover, in addition to storing the outgoing transitions
of a state, we also store the incoming transitions. These are useful when computing the top
value, constructing the safety closure, and determinizing the safety closure of limit average
automata (for deciding their safety). Finally, while boolean automata has a fixed domain
{0,1}, each quantitative automaton may define a different domain. To address this, each
automaton has two numerical variables representing the minimum and maximum of its domain,
whose values are taken as the minimum and maximum of the automaton’s weights by default.

6.3.2 Structure of QuAK

Figure 6.3 illustrates the overall reduction strategy implemented in QuAK. At its core, QUAK is
built around two fundamental algorithms: the inclusion check and the top value computation.
These two procedures serve as the basis for solving all other decision problems in quantitative
automata, helping us achieve a modular and efficient design.

In the left subfigure, the inclusion algorithm is shown at the root of a reduction tree. Other
problems such as equivalence and universality reduce to inclusion. For example, for nonde-
terministic automata with the “basic” value functions Inf, Sup, LimInf, LimSup (denoted by
the subscript nd,b), the bottom value is computed by a reduction to the universality problem:
the greatest weight for which the automaton is universal gives us the bottom value. In turn,
these universality checks are treated as instances of the inclusion problem: an automaton A is
universal w.r.t v iff it includes the single-state automaton that maps all words to v.

The right subfigure shows the role of the top value algorithm. For example, the bottom value
of a deterministic automaton A with the value function Val is computed as the top value of
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the copy A’ of A where all weights are multiplied by —1 and the value function replaced by
its dual (e.g., A’ is an Inf-automaton if Val = Sup).

6.3.3 Antichain-based Inclusion Algorithm

The language inclusion problem of Biichi automata is known to be PSPACE-complete. Algo-
rithms that behave well in practice have been investigated for decades and remain an active
research field. Among others, FORKLIFT [DGM22a] uses the Ramsey-based technique and
leverages the antichain heuristic. The algorithm to decide whether L(.4) C L(B) holds searches
for counterexamples (i.e., words that are in L(A) but not L(B)) by systematically running
membership queries. The Ramsey-based approach prunes the search for counterexamples
by discarding candidate words in L(.A) which are “subsumed” by other words of L(.A) with
respect to a given well-quasiorder. Termination comes from the mathematical properties of
well-quasiorders guaranteeing that only finitely many candidates will be kept after pruning.
Correctness is trivial: if a kept candidate witnesses the violation of L(.A) C L(B) then the
inclusion does not hold. To guarantee completeness, we require the quasiorder to fulfill, for all
candidates w € 3¢ subsumed by wq € 3¢, that wy € L(B) implies w € L(B). Hence, if all
candidates belong to L(B) then so do the discarded ones. The antichain heuristic allows a
symbolic fixpoint computation of the remaining candidates [WDHRO6].

Language inclusion can be decided by reasoning solely on ultimately periodic words (a.k.a.
lasso words). So, the candidates are words of the form wv®, where v € ¥* and v € X7
are called a stem and a period, respectively. [DGPR21] provides an algorithm that uses two
quasiorders: one for the stems and one for the periods. Since using different quasiorders
yields more pruning when searching for an inclusion violation, [DGM22b] considers using an
unbounded number of quasiorders called FORQ: one for the stems and a family of quasiorders
for the periods, each of them depending on a distinct stem. It is worth emphasizing that each
quasiorder requires a fixpoint computation, and thus, the more quasiorders are handled, the
more the antichain heuristic is leveraged.

The novelty of FORKLIFT lies in the use of FORQ to discard candidates. Below, we generalize
FORQs for Biichi automata defined in [DGM22b] to support LimSup automata.

Definition 6.3.1. Let B = (3,Q,t,d) be a LimSup automaton over the weights W =
{~7(t) | t is a transition of B}. The structural FORQ of B is the pair (38, {=ZP},cs) where
the quasiorders are defined by:

U1l KB

~Y

uy <= Tgtg(uy) C Tgtg(usg)
v, 3By, — Cxt(Tgtg(u),v1) C Cxtg( Tgtg(u), ve)

~Uu

with Tgtg: ¥* — 29 and Cxtg: 29 x BT — 2@x@W gych that

Tgtg(u) ={d € Q|1 >5q}
Cxtg(S,v) = {(q,d,x) | ¢ € S,p=q =5 ¢, and x is the maximum
of the weight sequence of p}

The modification appears in the definition of Cxtsz where = ranges over the weights of B
instead of {_L, T}. Extending all the properties on structural FORQ established by [DGM22b]
to this definition is straightforward, and implies the soundness of our inclusion algorithm for
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Word* witEmpt, witSafe;

Automaton* A = new Automaton("A.txt");

Automaton* B = safetyClosure(A, LimInfAvg);

Automatonx C livenessComponent (A, LimInfAvg);

bool flagEmpt = A->isNonEmpty(LimInfAvg, 5, &witEmpt);
bool flagSafe = A->isSafe(LimInfAvg, &witSafe);

Figure 6.4: An example usage of QuAK as a C++ library and its ability to compute witnesses
for its results. The functions isNonEmpty and isSafe take an additional (optional) parameter
for storing the stem and the period of the ultimately periodic word witnessing the algorithms'’
outputs.

LimSup automata. To use this algorithm for other classes of automata, we translate Inf, Sup,
and LimInf automata to LimSup automata in PTIME for inclusion queries.

We highlight the remaining technical modifications below.

» Given a stem u € X*, the data structure used for the fixpoint computation of Cxtz
carries (as in FORKLIFT) a period v € X7, a context Cxtp(Txts(u),v), and (in addition
to FORKLIFT) the value of A over uv®.

» In FORKLIFT, the fixpoint computation of Cxtg does not leverage SCCs. A compilation
option provides an implementation for QuUAK that computes Cxtg while only considering
intra-SCC transitions. We call this optimization scc-search.

6.3.4 Witness Computation

Internally, QuUAK handles every problem either as inclusion checking or top-value computation.
Therefore, to improve QuAK's informativeness and practical utility, we implemented these two
algorithms with the capability of returning an ultimately periodic word witnessing the their
results. Specifically, for inclusion checking (verifying that A(w) < B(w) for all words w), the
witness w0 satisfies A(w) > B(w), and for computing the top value T 4 = sup,,csw A(w), the
witness W meets A(w) = T 4.

Inclusion checking is implemented using an antichain-based algorithm as discussed above
in Section 6.3.3. As this algorithm systematically searches for counterexamples, it inherently
supports witness construction for negative instances. Top value computation is based on
the standard graph-theoretic algorithms [CDH10b], with witness generation achieved via
backtracking pointers.

Recall the nondeterministic limit-average automaton A and its safety-liveness decomposition
from Figure 6.2. The first three lines of the code snippet in Figure 6.4 construct the automata
A, B, and C as presented in Figure 6.2. The nonemptiness check returns false, and witEmpt
points to an array storing uw = hi and v = hi as T4 = A(h/”) = 6. Similarly, the safety
check returns false and witSafe points to an array storing u = v = lo as B(l0*) = 4 and

A(lo”) = 2.

6.3.5 Constant-function Check for Limit-Average Automata

Checking whether a limit average automaton A is constant can be done by a reduction
to the limitedness problem of distance automata [BHMS23, Thm. 3.7]. To simplify our
implementation, we consider a reduction to the universality problem of LimInf automata. In
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essence, our reduction follows [BHMS23, Thm. 3.7] except for in two points. First, after
removing negative-weighted edges by Johnson's algorithm, instead of constructing a distance
automaton, we flip the weights again to construct a limit average automaton (which resolves
nondeterminism by sup and has the same value function as the input automaton). This yields
an automaton B with non-positive transition weights. Then, we construct a LimInf automaton
C by mapping negative weights of B to 0, and 0-valued weights to 1. Note that it may not
hold that B(w) < 0 iff C(w) < 1 for all words w, but since C recognizes an w-regular language,
we can show that B is constant iff C is universal with respect to 1.

More specifically, the reduction goes as follows. Let A be a LimInfAvg (resp. LimSupAvg)
automaton. First, construct A; by subtracting T from all transition weights of A. We have
Aj(w) = A(w) — T for all words w. Then, construct A, by multiplying by —1 all transition
weights of A1, resolving nondeterminism by inf, and taking the value function LimSupAvg
(resp. LimInfAvg). We have Ay(w) = —A;(w) for all words w. Then, construct A3 by using
Johnson's algorithm to remove transitions with negative weights of 4;. We have Ay (w) > 0
iff A3(w) > 0 for all words w. Then, construct B by multiplying by —1 all transition weights
of Aj, resolving nondeterminism by sup, and taking the value function LimInfAvg (resp.
LimSupAvg). We have B(w) = —A;(w) for all words w. Note that all transitions of B have
non-positive weights. Finally, obtain C by updating the weights of B as follows and taking the
value function LimInf: if a transition has weight 0, then its new weight is 1; otherwise (weight
less than 0), then its new weight is 0.

By construction, A is constant T iff B is constant 0. We argue that B is constant iff C is
universal (with respect to 1). If there is a word w; € X such that B(w;) < 0, then all runs
of B over w visit infinitely often some negative weight. Thus, C(w;) < 1 comes as a direct
consequence of this implication. Note, however, that the reciprocal is not true, i.e., all runs of
a word could visit infinitely often some negative weight while being mapped to 0 by 5. Now,
if there is a word wq € 3¢ such that C(ws) < 1, then there exists also an ultimately periodic
word w € 3¢ such that C(w) < 1. This is because C is a co-Biichi automaton that defines a
non-empty w-regular language. Let w be of the form wv*. We define z = |u|, y = |v|, and
let n be the number of states of C. Suppose towards contradiction that some run of C over w
visits only the weight 1 for x + yn consecutive transitions. It implies that this run visits twice
the same state at the end of the period v while visiting only the weight 1 in between, which
exhibits another run of C over w of value 1, and thus leads to the contradiction C(w) = 1.
Hence, all runs of C over w periodically visit the weight 0 after x + yn transitions. Since B
differs from C only in transition weights, all runs of I3 over w periodically visit some negative
weight after = + yn transitions, therefore B(w) < 0. In conclusion, A defines a constant
function iff C is universal (with respect to 1). Note that we can directly construct C from A
in PTIME.

6.3.6 Monitoring

Given a specification represented as a deterministic quantitative automaton A, QuAK is able
create a monitor object that stores an array of top values (storing the top value of A? for each
state ¢ of LA), an array of bottom values (storing the bottom value of A? for each state g of
A), and a pointer to the current state of .4 (initialized as the initial state of .4). A monitor
object can read input letters incrementally while getting the next state g of /A and maintaining
the lowest and highest values achievable from ¢, namely, the bottom and top values of A%. In
addition, we implement running average monitors for limit average automata.
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6.4 Experimental Evaluation

We evaluated QuAK in a set of experiments. In particular, we measure the performance
our antichain-based inclusion algorithm and compare it to the standard algorithm based on
repeated reduction to language inclusion of Biichi automata. These experiments include also
the measurement of the impact of the scc-search optimization described in Section 6.3.
Next, we evaluate the runtime of checking if an automaton defines a constant funcion. Finally,
we use QuAK to runtime monitor the smoothness of a controller for a drone to show that the
tool can be used in the context of quantitative runtime monitoring.

Setup QuAK was compiled with -O3 and link-time optimizations enabled. The scc-search
optimization was enabled for all experiments except a part of those that aimed at evaluating
this optimization (Section 6.4.1). All experiments ran on machines with AMD EPYC CPU
with the frequency 3.1 GHz. The time limit was set to 100s wall time.

Benchmarks Because of the lack of benchmarks for quantitative automata, we used randomly
generated quantitative automata. All automata are complete (i.e., every state has an outgoing
transition for each symbol in the alphabet) and have weights between -10 and 10 chosen
uniformly at random. An automaton that has n states can have up to n|X| + 2n + 1 edges
where Y is the alphabet. As a result, the generated automata are nondeterministic. The
number of states and the size of alphabet differ in the experiments and are always explicitly
mentioned.

6.4.1 Comparing Inclusion Algorithms

In this subsection, we compare the standard approach to compute the quantitative automata
inclusion (referred to as Standard) with our antichain-based inclusion algorithm (referred to
as Antichains). The implementation of the standard approach uses the boolean version of
FORKLIFT to decide the inclusion of boolean automata. Both algorithms are implemented
in QuAK.

Figure 6.5 shows the CPU time of running Standard and Antichains algorithms for Val €
{Sup, LimSup}. We used 100 random automata with 2-32 states and with 2-symbol alphabet.
Algorithms were ran for each possible pair of the automata, which results in 10000 inclusion
checks. In the plots, we show only the runs where at least one algorithm decided the inclusion.

The algorithm Antichains is almost always faster, often significantly, and it can finish in a lot
of cases when Standard reaches the time limit (points on the blue dashed line). The Standard
algorithm internally runs (the boolean version of) Antichains algorithm multiple times for each
weight, and therefore it is expected that Antichains should be faster most of the times.

Evaluating Optimizations of Inclusion Algorithms The results in Figure 6.5 are for
QuAK that is compiled with the scc-search optimization (see Section 6.3.3). Plots in
Figure 6.6 show that this optimization significantly improves the runtime. The plot on the
left shows how many instances (the z axis) can be decided given the time limit is set to
the value on the y axis. The optimization allows to decide nearly 2000 more instances in
under 2 seconds. The plot on the right shows that the optimization also hurts in some cases.
Nevertheless, it helps with approximately 90% of the considered automata.
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Figure 6.5: CPU time in milliseconds of running Antichains (x axis) and Standard (y axis)
inclusion algorithms on random automata with 2-32 states where at least one algorithm
finished within time limit. The alphabet has 2. Orange dots are for pairs of automata that are
not included and green crosses are for included automata. The scatter plot on the left is for
Sup and on the right for LimSup value function.

6.4.2 Evaluating Constant-function Checking

To evaluate the constant-function checking algorithm for limit-average automata, we generated
1000 random automata with a 4-symbol alphabet and 1-100 states. The results of running
the algorithm on these automata are summarized in Figure 6.7.

The computational complexity of the algorithm increases steeply: for larger automata, the
result is typically computed either quickly or not at all. While the algorithm times out on
many instances, the results suggest that deciding whether an automaton is constant remains
feasible in certain cases. Notably, all instances that do not time out in our experiments fall
into one of two categories: they are either deterministic, for which the problem is in PTIME,
or the resulting co-Biichi automaton has a very low density of accepting edges, for which the
antichain-based algorithm finds witnesses for non-universality more easily.

6.4.3 Runtime Monitoring

We experimented with using quantitative automata for runtime monitoring. Our use case is to
monitor the smoothness of controllers of cyber-physical systems (CPS) [MMMS21], which
means that the actions issued by a CPS controller should always cause only a relatively small
change in the state of the CPS. For example, a controller of a drone should not instruct it to
immediately change to the opposite of the current direction. Controllers that are not smooth
can lead to increased energy consumption or even hardware failures [MMMS21].

We monitored a flying drone in a simulated environment. For simplicity, we assumed that the
drone is a point with mass 1 and its energy consumption is equal to the sum of forces generated
by the thrust of its engines. Each action issued by a controller is a pair of integers (z,y) that
represents the acceleration vector (on a 2D plane), with —10 < z,y < 10. Therefore, the
alphabet ¥ has 441 symbols. The monitor computes the running average of weights of the
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Figure 6.6: CPU time of running Antichains algorithm with and without the scc-search
optimization on the benchmarks from Figure 6.5. In the left plot, the x axis shows how many
instances the inclusion algorithms are able to decide given the time limit on the y axis. The
right plot compares the runtime per instance. There, orange dots are for pairs of automata
that are not included and green crosses are for included automata. The plots are for Sup
automata and time is in seconds.
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Figure 6.7: CPU time of deciding if an automaton defines a constant function. Points
representing timeouts were moved above the timeout line (the dashed line) and separated
(with no particular order with respect to the vertical axis).

automaton A,; that has one state for each symbol from X, and from each state ¢ there is an

outgoing edge ¢ = ¢’ to any other state ¢’ under the symbol ¢’. In other words, the states
remember the last issued action. The weight x of each transition going from ¢ to ¢’ is the
distance between ¢ and ¢'. In total, the automaton A,; has 441 states and 194481 edges.

The initial mission of the drone was to get from the point (0,0) to (1000, 1000) (with no
obstacles) using a controller that every 0.1s issues a command to accelerate toward the target.
However, a random deviation taken from the normal distribution with mean 0 and standard
deviation either 1 or 5 (this is a parameter) is applied to both acceleration coordinates at
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Figure 6.8: Results of monitoring the smoothness of a drone controller on an erratic and
smoothed trajectory (resp., Original and Smoothed). The situation is depicted on the left
where the erratic trajectory is blue and the smoothed one is red. Only a part of the trajectories
is shown. In the table on the right, Score is the value computed by the monitor and EC is
the energy consumption of the drone on the trajectory. The lower is the score, the smoother
should be the trajectory. All numbers are averages from 3 simulations.

every step. The magnitude of the acceleration is also random, skewed toward the maximum
acceleration value 10. If the resulting acceleration along a coordinate is greater (lower) than
10 (resp., -10), it is set to 10 (resp., -10).

The rather chaotic controller described above models an imperfect controller and results in
navigating the drone along an erratic trajectory. We ran another mission where the drone
followed the previously taken erratic trace that has been smoothed using gradient ascent. The
situation is depicted on the left in Figure 6.8, and the results of monitoring the trajectories
is on the right in the same figure. The monitor correctly assigns lower scores to smoother
trajectories, which directly corresponds to the difference in energy consumption (EC).

6.5 Conclusion

We presented QuAK, our software tool for automating quantitative automata analysis QUAK
supports Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg automata, along with algo-
rithms not only for standard decision problems but also for safety and liveness, by reducing
these problems to checking automaton inclusion or computing top values. Future work aims
to improve the tool's scalability and applicability while exploring more efficient verification
methods. One promising avenue is the development of symbolic approaches to efficiently
manage large state spaces. Another key direction involves extending the tool to support
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additional formalisms, such as various types of discounted-sum automata [Bok24], mean-payoff
automaton expressions [CDE*10], and nested quantitative automata [CHO17]. In parallel with
these efforts, developing novel verification methods specifically tailored to the safety fragments
of expressive quantitative formalisms presents an exciting research direction.

120



CHAPTER

Conclusions and Future Work

In this thesis, we focused on the classification and monitoring of quantitative properties. We
considered resource-precision tradeoffs of quantitative and approximate monitors central and
accordingly presented a theory of monitorability that allows the formal analysis of quanti-
tative properties and monitors from this perspective. In particular, we made the following
contributions.

= In Chapter 3, we defined different forms of quantitative and approximate limit monitora-
bility and showed how these definitions naturally extend existing boolean monitorability
notions. From these definitions, we developed a framework for evaluating monitors by
analyzing trade-offs between their precision and resource use. We illustrated, through
examples, that providing monitors with more resources, like additional registers or states,
can result in improved approximations.

In Chapter 4, we proposed an abstract view of quantitative monitors as an equivalence
class on finite words and a function that maps each class to a value, allowing to assess
monitor precision and resource use. Based on this abstraction, we showed that optimal
approximate monitors, in terms of resource use, are not unique and they may not greedily
minimize the size of their equivalence relation. We also illustrated how our approach
enables a formal analysis of resource-precision tradeoffs for quantitative monitors. For
instance, we presented properties that admit infinite hierarchies of approximate monitors
and others where reducing resources inevitably worsens the limit error.

» In Chapter 5, we formalized quantitative generalizations of safety, liveness, co-safety, and
co-liveness, and established that every quantitative property can be decomposed as the
pointwise minimum of a safety and a liveness property (and similarly, as the pointwise
maximum of a co-safety and a co-liveness property). We identified the connection
between quantitative safety and topological continuity and provided characterizations
that explain how quantitative safety and liveness relate back to their boolean counter-
parts. We proposed the notions of approximate safety and co-safety and proved that
every quantitative property that is approximately safe and co-safe admits a finite-state
approximate monitor. Then, focusing on quantitative properties definable by finite-state
quantitative automata, we showed a close relationship between verifying if a quantitative
automaton defines a constant function and deciding its safety and liveness; we presented
algorithms to decide this property for standard classes of quantitative automata. Finally,
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we provided algorithms for computing the safety closure of quantitative automata,
deciding their safety and liveness, and decomposing them into their safety and liveness
components.

= |In Chapter 6, we presented the first software tool QuAK for automating the analysis
and monitoring of quantitative automata. In addition to implementing the standard
quantitative automata algorithms from the literature, such as nonemptiness, universality,
and inclusion checking, we integrated most of our algorithms from Chapter 5 to allow
deciding safety and liveness and to decompose quantitative automata accordingly. We
also showed how QuAK can be used for monitoring and evaluated it empirically to
demonstrate its practical effectiveness.

We conclude the thesis with a discussion of future research directions.

An absolute notion of resource use The theory of quantitative and approximate mon-
itorability we introduced in Chapter 3 provided a relative approach to reasoning about a
monitor’s quality: the key notion of precision focused only on whether a monitor gets closer
to the property value compared to another monitor. We addressed this in Chapter 4 by
considering properties that are defined as limits of values of finite words—the so-called limit
properties—and defining a monitor’s precision as the worst-case distance of its verdict values
to these property values. Therefore, we are able to speak of a monitor's quality in absolute
terms, not only relative to another monitor.

A current drawback of our monitorability framework is the lack of means to reason about a
monitor’s resource use in absolute terms beyond the number of states (of a finite-state monitor)
or registers (of a register monitor). This measure might suffice for finite-state monitors, but it
is not fine-grained enough for infinite-state ones. Although our notion of resource optimality
offers a partial solution, it still lacks the nuance for reasoning about the resource use of
non-optimal monitors. Therefore, there is still a need to develop the resource-use side of our
theory further. The exploration may benefit from the plethora of work on streaming algorithms,
where such resource use (and precision) concerns are analyzed in great detail.

Synthesizing approximate monitors In this thesis, we mainly demonstrated the “de-
scriptive” side of our framework: We identified classes of properties that are amenable to
resource-precision tradeoffs in approximate monitoring, we clarified various difficulties in de-
veloping and analyzing approximate monitors, we showed the existence of arbitrarily precise
finite-state monitors for properties that are both safe and co-safe, and so on. These contribu-
tions are valuable for understanding the approximate monitoring setting and recognizing the
opportunities and challenges for instantiating our theoretical framework in practice, which we
have so far focused little on.

An important part we aim to explore further is the “constructive” side of our theory, focusing on
the synthesis of approximate monitors under resource and precision constraints. We believe this
is a crucial first step to bridge the gap between theory and practice of approximate monitoring.
One may start with a simple setting where fully automatic methods can be developed, e.g.,
for finite-state properties and monitors, and push it further by considering semi-automatic or
incomplete methods.

Making quantitative safety (and liveness) practical In Chapter 5, we introduced the
notions of safety and liveness for quantitative properties and studied the two ends of the
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spectrum: first, without making any assumptions on the specification language, and then
considering only the classes of quantitative properties defined by finite-state quantitative
automata. In the boolean setting, safety fragments of expressive formalisms can be verified
or monitored efficiently, while liveness fragments require heavier methods. Our results also
indicate a similar potential, for example, every limit-average automaton that defines a safety
property can be expressed as an Inf automaton and thus enjoys many closure and decidability
properties.

We plan to investigate classes of quantitative properties beyond finite-state, study their safety
and liveness, and provide efficient verification and monitoring algorithms for them. A first
step in this direction may focus on nested quantitative automata [CHO17], which are able
to express many interesting properties such as response time. Moreover, another direction
may explore approaches to verify and monitor subclasses of finite-state liveness properties.
These efforts may be complemented by developing QuAK from Chapter 6 by implementing
the resulting algorithms.

Quantitative hyperproperties So far, we have only considered trace properties, which
are described as functions of individual system executions: every execution is given a value
independently of other executions. Such properties have traditionally been the focus of
verification efforts, but they lack the ability to specify properties that consider how multiple
executions relate. Hyperproperties address this gap—they describe system properties as
functions of sets of executions: each possible implementation is given a value that reflects how
its executions relate [CS10]. In the quantitative setting, while a trace property can specify
the average response time of a server's execution, a hyperproperty can specify the worst-case
average response time of its implementations.

We plan to define and systematically study such quantitative hyperproperties, including
exploring their safety and liveness. While a general view, as in the first part of Chapter 5, can
help, developing and investigating formalisms for specifying quantitative hyperproperties will
be crucial.
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