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ABSTRACT. Safety and liveness stand as fundamental concepts in formal languages, playing
a key role in verification. The safety-liveness classification of boolean properties charac-
terizes whether a given property can be falsified by observing a finite prefix of an infinite
computation trace (always for safety, never for liveness). In the quantitative setting, prop-
erties are arbitrary functions from infinite words to partially-ordered domains. Extending
this paradigm to the quantitative domain, where properties are arbitrary functions map-
ping infinite words to partially-ordered domains, we introduce and study the notions of
quantitative safety and liveness.

First, we formally define quantitative safety and liveness, and prove that our definitions
induce conservative quantitative generalizations of both the safety-progress hierarchy and
the safety-liveness decomposition of boolean properties. Consequently, like their boolean
counterparts, quantitative properties can be min-decomposed into safety and liveness parts,
or alternatively, max-decomposed into co-safety and co-liveness parts. We further establish
a connection between quantitative safety and topological continuity and provide alternative
characterizations of quantitative safety and liveness in terms of their boolean analogs.

Second, we instantiate our framework with the specific classes of quantitative properties
expressed by automata. These quantitative automata contain finitely many states and
rational-valued transition weights, and their common value functions Inf, Sup, LimInf,
LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totally-ordered
domain of real numbers. For all common value functions, we provide a procedure for
deciding whether a given automaton is safe or live, we show how to construct its safety
closure, and we present a min-decomposition into safe and live automata.

Key words and phrases: quantitative safety, quantitative liveness, quantitative automata, safety-progress
hierarchy, safety-liveness decomposition.
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1. INTRODUCTION

Boolean safety and liveness. Safety and liveness are elementary concepts in the semantics
of computation [Lam77]. They can be explained through the thought experiment of a ghost
monitor—an imaginary device that watches an infinite computation trace (word) at runtime,
one observation (letter) at a time, and always maintains the set of possible prediction values
to reflect the satisfaction of a given property. Let @ be a boolean property, meaning that &
divides all infinite traces into those that satisfy @, and those that violate ®@. After any finite
number of observations, True is a possible prediction value for @ if the observations seen so
far are consistent with an infinite trace that satisfies @, and False is a possible prediction
value for @ if the observations seen so far are consistent with an infinite trace that violates @.
When True is no possible prediction value, the ghost monitor can reject the hypothesis that
@ is satisfied. The property @ is safe if and only if the ghost monitor can always reject a
violating hypothesis @ after a finite number of observations. Orthogonally, the property @ is
live if and only if the ghost monitor can never reject a hypothesis @ after a finite number of
observations: for all infinite traces, after every finite number of observations, True remains
a possible prediction value for @.



Vol. 21:2 SAFETY AND LIVENESS OF QUANTITATIVE PROPERTIES AND AUTOMATA 2:3

The safety-liveness classification of properties is fundamental in verification. In the
natural topology on infinite traces—the “Cantor topology” —the safety properties are the
closed sets, and the liveness properties are the dense sets [AS85]. For every property &,
the location of @ within the Borel hierarchy that is induced by the Cantor topology—the
so-called “safety-progress hierarchy” [CMP93]—indicates the level of difficulty encountered
when verifying @. On the first level, we find the safety and co-safety properties, the latter
being the complements of safety properties, i.e., the properties whose falsehood (rather than
truth) can always be rejected after a finite number of observations by the ghost monitor.
More sophisticated verification techniques are needed for second-level properties, which
are the countable boolean combinations of first-level properties—the so-called “response’
and “persistence” properties [CMP93]. Moreover, the orthogonality of safety and liveness
leads to the following celebrated fact: every property can be written as the intersection
of a safety property and a liveness property [AS85]. This means that every property &
can be decomposed into two parts: a safety part—which is amenable to simple verification
techniques, such as invariants—and a liveness part—which requires heavier verification
paradigms, such as ranking functions. Dually, there is always a disjunctive decomposition of
@ into co-safety and co-liveness.

?

Quantitative safety and liveness. So far, we have retold the well-known story of safety
and liveness for boolean properties. A boolean property @ is formalized mathematically
as the set of infinite computation traces that satisfy @, or equivalently, the characteristic
function that maps each infinite trace to a truth value. Quantitative generalizations of the
boolean setting allow us to capture not only correctness properties, but also performance
properties [HO13]. In this paper we reveal the story of safety and liveness for such quantitative
properties, which are functions from infinite traces to an arbitrary set I of values. In order
to compare values, we equip the value domain D with a partial order <, and we require
(D, <) to be a complete lattice. The membership problem [CDH10] for an infinite trace w
and a quantitative property @ asks whether ®(w) > v for a given threshold value v € D.
Correspondingly, in our thought experiment, the ghost monitor attempts to reject hypotheses
of the form @(w) > v, which cannot be rejected as long as all observations seen so far are
consistent with an infinite trace w with ®(w) > v. We will define @ to be a quantitative
safety property if and only if every wrong hypothesis of the form ®(w) > v can always be
rejected by the ghost monitor after a finite number of observations, and we will define &
to be a quantitative liveness property if and only if some wrong hypothesis of the form
&(w) > v can never be rejected by the ghost monitor after any finite number of observations.
We note that in the quantitative case, after every finite number of observations, the set of
possible prediction values for @ maintained by the ghost monitor may be finite or infinite,
and in the latter case, it may not contain a minimal or maximal element.

Examples. Suppose we have four observations: observation rq for “request a resource,” gr
for “grant the resource,” tk for “clock tick,” and oo for “other.” The boolean property
Resp requires that every occurrence of rq in an infinite trace is followed eventually by
an occurrence of gr. The boolean property NoDoubleReq requires that no occurrence
of rq is followed by another rq without some gr in between. The quantitative property
MinResp Time maps every infinite trace to the largest number k& such that there are at least k
occurrences of tk between each rq and the closest subsequent gr. The quantitative property
MazxRespTime maps every infinite trace to the smallest number k such that there are at
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most k occurrences of tk between each rq and the closest subsequent gr. The quantitative
property AwvgRespTime maps every infinite trace to the lower limit value liminf of the
infinite sequence (v;);>1, where v; is, for the first ¢ occurrences of tk, the average number
of occurrences of tk between rq and the closest subsequent gr. Note that the values of
AvgRespTime can be oo for some computations, including those for which the value of Resp
is True. This highlights that boolean properties are not embedded in the limit behavior of
quantitative properties.

The boolean property Resp is live because every finite observation sequence can be
extended with an occurrence of gr. In fact, Resp is a second-level liveness property (namely,
a response property), because it can be written as a countable intersection of co-safety
properties. The boolean property NoDoubleReq is safe because if it is violated, it will be
rejected by the ghost monitor after a finite number of observations, namely, as soon as the
ghost monitor sees a rq followed by another occurrence of rq without an intervening gr.
According to our quantitative generalization of safety, MinRespTime is a safety property.
The ghost monitor always maintains the minimal number & of occurrences of tk between any
past rq and the closest subsequent gr seen so far; the set of possible prediction values for
MinRespTime is then {0,1,...,k}. Every hypothesis of the form “the MinResp Time-value
is at least v” is rejected by the ghost monitor as soon as k < v; if such a hypothesis is
violated, this will happen after some finite number of observations. Symmetrically, the
quantitative property MaxRespTime is co-safe, because every wrong hypothesis of the form
“the MazRespTime-value is at most v” will be rejected by the ghost monitor as soon as
the smallest possible prediction value for MaxRespTime, which is the maximal number
of occurrences of tk between any past rq and the closest subsequent gr seen so far, goes
above v. By contrast, the quantitative property AwvgRespTime is both live and co-live
because no hypothesis of the form “the AvgRespTime-value is at least v,” nor of the form
“the AvgRespTime-value is at most v,” can ever be rejected by the ghost monitor after a
finite number of observations. All nonnegative real numbers and oo always remain possible
prediction values for AvgRespTime. Note that a ghost monitor that attempts to reject
hypotheses of the form @(w) > v does not need to maintain the entire set of possible
prediction values, but only the sup of the set of possible prediction values, and whether or
not the sup is contained in the set. Dually, updating the inf (and whether it is contained)
suffices to reject hypotheses of the form ®(w) < v.

Quantitative safety and liveness in automata. The notions of safety and liveness
consider system properties in full generality: every set of system executions—even the
uncomputable ones—can be seen through the lens of the safety-liveness dichotomy. To bring
these notions more in line with practical requirements, their projections onto formalisms
with desirable closure and decidability properties, such as w-regular languages, have been
studied thoroughly in the boolean setting. For example, [AS87] gives a construction for
the safety closure of a Biichi automaton and shows that Biichi automata are closed under
the safety-liveness decomposition. In turn, [KVO01] describes an efficient model-checking
algorithm for Biichi automata that define safety properties.

Similarly to how boolean automata (e.g., regular and w-regular automata) define classes
of boolean properties amenable to boolean verification, quantitative automata (e.g., limit-
average and discounted-sum automata) define classes of quantitative properties amenable
to quantitative verification. Quantitative automata generalize standard boolean automata
with weighted transitions and a value function that accumulates an infinite sequence of
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Figure 1: (a) A LimSup-automaton A modeling the long-term maximal power consumption
of a device. (b) An Inf-automaton (or a LimSup-automaton) expressing the safety
closure of A. (c) A LimSup-automaton expressing the liveness component of the
decomposition of A.

rational-valued weights into a single real number, a generalization of acceptance conditions
of w-regular automata.

We study the projection of the quantitative safety-liveness dichotomy onto the properties
definable by common quantitative automata. First, we show how certain attributes of
quantitative automata simplify the notions of safety and liveness. Then, we use these
simplifications to study safety and liveness of the classes of quantitative automata with the
value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum [CDH10]. In
Figure 1a, we describe a quantitative automaton using the value function LimSup to express
the long-term maximal power consumption of a device, which is neither safe nor live.

Contributions and overview. First, we focus on quantitative properties in their entire
generality (Sections 2 to 5). We formally introduce quantitative safety as well as safety
closure, namely the property that increases the value of each trace as little as possible to
achieve safety. Then, we prove that our generalization of the boolean setting preserves
classical desired behaviors. In particular, we show that a quantitative property @ is safe
if and only if @ equals its safety closure. Moreover, for totally-ordered value domains, a
quantitative property is safe if and only if for every value v, the set of executions whose value
is at least v is safe in the boolean sense. We demonstrate a close relation between safety
properties and continuous functions with respect to the dual Scott topology of their value
domain. Pushing further, we define discounting properties on metrizable totally-ordered
value domains, characterize them through uniform continuity, and show that they coincide
with the conjunction of safety and co-safety.

We then generalize the safety-progress hierarchy to quantitative properties. We first
define limit properties. For Val € {Inf,Sup, LimInf, LimSup}, the class of Val-properties
captures those for which the value of each infinite trace can be derived by applying the
limit function Val to the infinite sequence of values of finite prefixes. We prove that Inf-
properties coincide with safety, Sup-properties with co-safety, LimInf-properties are suprema
of countably many safety properties, and LimSup-properties infima of countably many
co-safety properties. The LimInf-properties generalize the boolean persistence properties
of [CMP93]; the LimSup-properties generalize their response properties. For example,
AvgRespTime is a LimInf-property.

We continue with introducing quantitative liveness and co-liveness, and prove that their
relations with quantitative safety and co-safety further preserve the classical boolean facts. In
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particular, we show that in every value domain there is a unique property which is both safe
and live, and then as a central result, we provide a safety-liveness decomposition that holds
for every quantitative property, i.e., every quantitative property is the pointwise minimum
of a safety and a liveness property. We also prove that, like for boolean properties, there
exists a liveness-liveness decomposition for every nonunary quantitative property. Moreover,
we provide alternative characterizations of liveness for quantitative properties that have the
ability to express the least upper bound over their values, namely, supremum-closed. For
such properties, we show that a property is live iff for every value v, the set of executions
whose value is at least v is live in the boolean sense.

Second, we focus on quantitative automata (Sections 6 to 9). In contrast to general
quantitative properties, these automata use functions on the totally-ordered domain of
the real numbers (as opposed to a more general partially-ordered domain). Quantitative
automata also have the restriction that only finitely many weights (those on the automaton
transitions) can contribute to the value of an execution. In this setting, we carry the notion
of safety (resp. co-safety, discounting) from properties to value functions, and show that a
value function is safe (resp. co-safe, discounting) iff every quantitative automaton equipped
with this value function expresses a safety (resp. co-safety, discounting) property. For
example, Inf is a safe value function, and DSum is a discounting value function, therefore
both safe and co-safe thanks to our characterization in the general setting.

We prove that the considered classes of quantitative automata are supremum-closed.
Together with the total-order constraint, this helps us simplify the study of their safety and
liveness thanks to our alternative characterizations from the first part. These simplified
characterizations prove useful for checking safety and liveness of quantitative automata,
constructing their safety closure, and decomposing them into safety and liveness components.

For example, let us recall the quantitative automaton in Figure la. Since it is supremum-
closed, we can construct its safety closure in PTIME by computing the maximal value it can
achieve from each state. The safety closure of this automaton is shown in Figure 1b. For
the value functions Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg, the safety closure
of a given automaton is an Inf-automaton, while for DSum, it is a DSum-automaton.

Evidently, one can check if a quantitative automaton A is safe by checking if it is
equivalent to its safety closure, i.e., if A(w) = SafetyCl(A)(w) for every execution w.
This allows for a PSPACE procedure for checking the safety of Sup-, LimInf-, and LimSup-
automata [CDH10], but not for LimInfAvg- and LimSupAvg-automata, whose equivalence
check is undecidable [DDG*10, CDE'10, HPPR18]. For these cases, we use the special
structure of the safety-closure automaton for reducing safety checking to the problem of
whether an automaton expresses a constant function. We show that the latter problem
is PSPACE-complete for LimInfAvg- and LimSupAvg-automata, by a somewhat involved
reduction to the limitedness problem of distance automata, and obtain an EXPSPACE
decision procedure for their safety check.

Thanks to our alternative characterization of liveness, one can check if a quantitative
automaton A is live by checking if its safety closure is universal with respect to its maximal
value, i.e., if SafetyCIl(A)(w) > T for every execution w, where T is the supremum over
the values of A. For all value functions we consider except DSum, the safety closure is an
Inf-automaton, which allows for a PSPACE solution to liveness checking [KL07, CDH10],
which we show to be optimal. Yet, it is not applicable for DSum-automata, as the decidability
of their universality check is an open problem. Nonetheless, as we consider only universality
with respect to the maximal value of the automaton, we can reduce the problem again
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to checking whether an automaton expresses a constant function, which we show to be in
PSPACE for DSum-automata. This yields a PSPACE-complete solution to the liveness check
of DSum-automata.

Finally, we investigate the safety-liveness decomposition for quantitative automata.
Recall the automaton from Figure la and its safety closure from Figure 1b. The liveness
component of the corresponding decomposition is shown in Figure 1c. Intuitively, it ignores
err and provides information on the power consumption as if the device never fails. Then, for
every execution w, the value of the original automaton on w is the minimum of the values of
its safety closure and the liveness component on w. Since we identified the value functions Inf
and DSum as safe, their safety-liveness decomposition is trivial. For the classes of automata
we study, we provide PTIME safety-liveness decompositions. Moreover, for deterministic Sup-,
LimInf-, and LimSup-automata, we give alternative PTIME decompositions that preserve
determinism.

We note that our alternative characterizations of safety and liveness of quantitative
properties extend to co-safety and co-liveness. Our results for the specific automata classes
are summarized in Table 1 and most are already implemented [CHMS24, CHMS25]. While
we focus on automata that resolve nondeterminism by sup, their duals hold for quantitative
co-safety and co-liveness of automata that resolve nondeterminism by inf, as well as for
deterministic automata. We leave the questions of co-safety and co-liveness for automata
that resolve nondeterminism by sup open.

Related Work. To the best of our knowledge, previous definitions of safety and liveness in
nonboolean domains make implicit assumptions about the specification language or implicitly
use boolean safety and liveness [KSZ14, FK18, QSCP22, BV19]. We identify three notable
exceptions - [WHK'13, LDL17, GS22].

In [WHK™13], the authors study a notion of safety for the rational-valued min-plus
weighted automata on finite words. They take a weighted property as v-safe for a given
rational v when for every execution w, if the hypothesis that the value of w is strictly less
than v is wrong (i.e., its value is at least v), then there is a finite prefix of w to witness it.
Then, a weighted property is safe when it is v-safe for some value v. Given a nondeterministic
weighted automaton A and an integer v, they show that it is undecidable to check whether
A is v-safe. By contrast, our definition quantifies over all values and nonstrict lower-bound
hypotheses. Moreover, for this definition, we show that checking safety of all common classes
of quantitative automata is decidable, even in the presence of nondeterminism.

In [LDL17], the authors present a safety-liveness decomposition on multi-valued truth
domains, which are bounded distributive lattices. Their motivation is to provide algorithms
for model-checking properties on multi-valued truth domains. While their definitions admit
a safety-liveness decomposition, our definition of liveness captures strictly fewer properties,
leading to a stronger safety-liveness decomposition theorem. In addition, our definitions also
fit naturally with the definitions of emptiness, equivalence, and inclusion for quantitative
languages [CDH10].

In [GS22], the authors generalize the framework of [PH18] to nonboolean value domains.
Their definitions do not allow for a safety-liveness decomposition since their notion of safety
is too permissive and their liveness too restrictive. They also do not have a fine-grained
classification of nonsafety properties. We further elaborate on the relationships between the
definitions of [LDL17, GS22] and ours in the relevant sections below.
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Inf  Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum
Safety clos:ure o(1) PTiME o(1)
construction Theorems 8.6 and 8.7
Constant-function PSPACE-complete
check Proposition 7.2 and Theorems 7.3 and 7.8
PSPACE- let EXPSPACE; PSPACE-hard
Safety check o() PACE-complete XPSPACE; PSPACE-har o()
Theorem 8.10 Theorem 8.12 and Lemma 8.9
PS - let
Liveness check PACE-compete
Theorem 9.2
Safety—livejn'ess 0(1) PTIME 0(1)
decomposition Theorems 9.3 to 9.5

Table 1: The complexity of performing the operations on the left column with respect to
nondeterministic automata with the value function specified on the top row.

Our study shows that determining whether a given quantitative automaton expresses a
constant function is key to deciding safety and liveness, in particular for automata classes
in which equivalence or universality checks are undecidable or open. To the best of our
knowledge, this problem has not been studied before.

2. QUANTITATIVE PROPERTIES

Let ¥ = {a,b,...} be a finite alphabet of letters (observations). An infinite (resp. finite)
word (trace) is an infinite (resp. finite) sequence of letters w € ¥“ (resp. u € ¥*). For
n € N, we denote by X" the set of finite words of length n. Given u € ¥* and w € ¥* U 3¢,
we write u < w (resp. u = w) when u is a strict (resp. nonstrict) prefix of w. We denote by
|w| the length of w € ¥* U X¥ and, given a € X, by |w|, the number of occurrences of a in
w. For w € ¥* UX¥ and 0 < i < |wl|, we denote by w[i] the ith letter of w.

A value domain D is a poset. We assume that D is a nontrivial (i.e., L # T) complete
lattice. Whenever appropriate, we write 0 or —oo instead of L for the least element inf D,
and 1 or oo instead of T for the greatest element suplD. We respectively use the terms
minimum and maximum for the greatest lower bound and the least upper bound of finitely
many elements.

A quantitative property is a total function @ : ¥* — D from the set of infinite words to
a value domain. A boolean property P C 3¢ is a set of infinite words. We use the boolean
domain B = {0,1} with 0 < 1 and, in place of P, its characteristic property &p : ¥¥ — B,
which is defined by ®p(w) = 1 if w € P, and ®p(w) = 0 if w ¢ P. When we say just
property, we mean a quantitative one.

Given a property @ and a finite word u € ¥*, let Pp, = {@P(uw) | w € ¥¥}. A
property @ is sup-closed (resp. inf-closed) when for every finite word u € ¥* we have that
sup Py € Pp,, (resp. inf Py, € Pp,,).

Given a property @ : 3* — D and a value v € D, we define ¢, = {w € X | &(w) ~ v}
for ~ € {<,>, £, 2}. The top value of a property @ is sup,cyw ®(w), which we denote
by Tg. For all properties @1,P2 on a value domain D and all words w € X%, we let
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min(®1, P2)(w) = min(P;(w), P2(w)) and max(Py, P2)(w) = max(P(w), P2(w)). For a
value domain D, the inverse of D is the domain D that contains the same elements as D
but with the ordering reversed. For a property @, we define its complement @ : ¥ — D by
&(w) = P(w) for all w € X,

Some properties can be defined as limits of value sequences. A finitary property
m: X* — D associates a value with each finite word. A walue function Val: D¥ — D
condenses an infinite sequence of values to a single value. Given a finitary property =, a
value function Val, and a word w € ¢, we write Val,<,m(u) instead of Val(m(ug)m(u1)...),
where each u; satisfies u; < w and |u;| = 1.

3. QUANTITATIVE SAFETY

A boolean property P C 3¢ is safe in the boolean sense iff for every w ¢ P there is a
prefix u < w with uw’ ¢ P for all w’ € ¥* [AS85], in other words, every wrong membership
hypothesis has a finite witness. Given a property @ : 3* — D, a trace w € ¥“, and a value
v € D, the quantitative membership problem [CDH10] asks whether @(w) > v. We define
quantitative safety as follows: the property @ is safe iff every wrong hypothesis of the form
&(w) > v has a finite witness u < w.

Definition 3.1 (Safety). A property @ : 3¢ — D is safe when for every w € ¥ and value
v € D with &(w) # v, there is a prefix u < w such that sup,,csw P(uw') 2 v.

Let us illustrate this definition with the minimal response-time property.

Example 3.2. Let ¥ = {rq, gr,tk,o0} and D = NU{oco}. We define the minimal response-
time property @i, through an auxiliary finitary property mmin that computes the minimum
response time so far. In a finite or infinite trace, an occurrence of rq is granted if it is
followed, later, by a gr, and otherwise it is pending. Let T, (u) = oo if the finite trace u
contains a pending rq, or no rq, and st (u) = |u/|sx — |t |k otherwise, where v/ < u is the
longest prefix of u with a pending rq, and u” < v’ is the longest prefix of «’ without pending
rq. Intuitively, m,g provides the response time for the last request when all requests are
granted, and oo when there is a pending request or no request. Given u € »*, taking the
minimum of the values of m,s over the prefixes ' < u gives us the minimum response time
so far. Let mmin(u) = ming, <, mas (v') for all u € ¥, and Ppin(w) = limy, <y Tmin (u) for all
w € X¥. The limit always exists because my, is nonincreasing.

The minimal response-time property is safe. Let w € ¥* and v € D such that @i (w) <
v. Then, some prefix u < w contains a rq that is granted after v < v ticks, in which case, no
matter what happens in the future, the minimal response time is guaranteed to be at most
v'; that is, sup,exw Pmin(vw’) < v' < v. Recalling from the introduction the ghost monitor
that maintains the sup of possible prediction values for the minimal response-time property,
that value is always Tmin; that is, sup,eyw Pmin(vw’) = Tmin(u) for all u € X*. Note that in
the case of minimal response time, the sup of possible prediction values is always realizable;
that is, for all u € ¥*, there exists w € X such that sup,,cyw Pmin(u') = Pmin(vw).

We first show that our definition of safety generalizes the boolean one.

Proposition 3.3. Quantitative safety generalizes boolean safety. In particular, for every
boolean property P C 3%, the following statements are equivalent:

(1) P is safe according to the classical definition [AS85].

(2) The characteristic property ®p is safe.
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(3) For every w € ¥* and v € B with ®p(w) < v, there exists a prefic u < w such that for
all w' € ¥, we have Pp(uw’) < v.

Proof. Recall that (1) means the following: for every w ¢ P there exists u < w such that
for all w' € X* we have uw’ ¢ P. Expressing the same statement with the characteristic
property @p of P gives us for every w € £ with ®p(w) = 0 there exists u < w such that
for all w' € ¢ we have ®p(uw’) = 0. In particular, since B = {0,1} and 0 < 1, we have
for every w € X¢ with @p(w) < 1 there exists u < w such that for all w’ € ¥ we have
&p(uw') < 1. Moreover, since there is no w € X% with @p(w) < 0, we get the equivalence
between (1) and (3). Now, observe that for every u € ¥* we have &p(uw’) < 1 for all
w' € X iff sup,eyw Pp(uw’) < 1, simply because the domain B is a finite total order.
Therefore, (2) and (3) are equivalent as well. ]

Next, we show that safety properties are closed under pairwise min and max.

Proposition 3.4. For every value domain D, the set of safety properties over D is closed
under min and max.

Proof. First, consider the two safety properties @1, @2 and let @ be their pairwise minimum,
ie., &(w) = min(P;(w), P2(w)) for all w € . Suppose towards contradiction that @ is
not safe, i.e., for some w € £ and v € D such that &(w) # v and sup,cyw P(uw’) > v
for all w < w. Observe that &(w) #? v implies @1(w) Z v or Po(w) 2 v. We assume
without loss of generality that @1(w) Z v holds. Thanks to the safety of @1, there exists
v’ < w such that sup,ycsw @1(v'w’) # v. Since & (v'w') > &(v'w’) for all w’ € X, we have
that sup,ycnw @1(v'w’) > sup,ryene @(vw/'w’) > v. This implies that sup,,cyw @1(v'w') > v,
which yields a contradiction.

Now, consider the two safety properties @1, @2 and let @ be their pairwise maximum,
ie., ?(w) = max(P;(w), P2(w)) for all w € 3¥. Suppose towards contradiction that & is not
safe, i.e., for some w € ¥¢ and v € D, we have ®(w) # v and sup,cyw P(uw’) > v for all
u < w. Due to safety of both @1 and &3, we get for each i € {1,2} the following: for all
w € X¥ and v € D if ;(w) Z v there is u; < w such that sup,ycxo P(uw’) 2 v. Combining
the two statements, we get for all w € £* and v € D if max(®;(w),P2(w)) # v, then
there exists u < w such that max(sup,csw @1(uw'), sup,csw P2(uw’)) # v. In particular,
max(sup,yeseo @1(uw’), sup,esw P2(uw’)) # v holds since max(Pq(w), Po(w)) = ¢(w) # v.
Since sup(X UY) = max(sup X,supY) for all X, Y C D, we get

sup (max (P (uw'), P2(uw’))) = max< sup @1(uw'), sup (152(uw’)) .

w'exw w’ €Xw w’' e
Consequently,
sup max (P (vw'), Po(uw’)) = sup P(uw’) # v,
w/eXw w! eXw
thus, a contradiction. ]

We now generalize the notion of safety closure and present an operation that makes a
property safe by increasing the value of each trace as little as possible.

Definition 3.5 (Safety closure). The safety closure of a property @ is the property
SafetyCl(P) defined by SafetyCl(®)(w) = infy, < SUP,yexw P(uw’) for all w e X¢.

We can say the following about the safety closure operation.

Theorem 3.6. For every property @ : 3 — D, the following statements hold.
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(1)
(2)
(3)
(4)
()

SafetyCl(®) is safe.

SafetyCl(P)(w) > P(w) for all w € X%,

SafetyCl(P)(w) = SafetyCl(SafetyCl(P))(w) for all w € L¥.

& is safe iff &(w) = SafetyCl(P)(w) for all w € ¥¥.

For every safety property ¥ : 3¢ — D, if &(w) < ¥(w) for all w € X¥, then
SafetyCl(P)(w) < ¥(w) for all w € X,

Proof. We first prove that sup,,csw SafetyCl(P)(uw’) < sup,ycso @(uw’) for all u € ¥, in
other words, sup,,csw infy <y SUPrese P(W/w”) < supyeyw @(uw’) for all w € ¥*. This
will be useful for the proofs of the first and the third items above.

(1)

Va2 sup,yeyw (uw') € {supreye @(w'w”) | v’ < u}
= Yu :sup,ese P(uw’) > infy <, sup,mesw @(u'w”)
= Yu :sup,ese P(uw’) > sup,cxw infy <, Sup,mesw @(u'w”) (1)

Y, t 2 sup,yesw P(uw') > sup,iese P(utw”)
= Yu :sup,ese P(uw’) > sup,csw infyyy sup,rese @(utw”) (1)

() A (1) = Yu:supyexe P(uw’) > sup, esw infy <y SUP,rese P(u'w”)

Now, we prove that SafetyCl(®) is safe. Suppose SafetyCl(P) is not safe, i.e., there
exist w and v for which SafetyCl(®)(w) # v and sup,,eyw SafetyCl(P)(uw') > v for
all v < w. As a direct consequence of the fact that sup, ey SafetyCl(P)(uw') <
SUP,yexe @(uw’) for all u € ¥*, we have that inf, -, sup, cxe @(uw’) > v. It implies
that SafetyCl(®)(w) > v, which contradicts the hypothesis SafetyCl(®P)(w) # v. Hence
SafetyCl(P) is safe.

Next, we prove that SafetyCl(®)(w) > &(w) for all w € ¥ Given u € ¥*, let
Py, = {@(uw') | w' € ¥¥}. Observe that SafetyCl(®)(w) = limy~q,(sup Pg,,) for
all w € ¥¥. Moreover, ®(w) € Pg,, for each v < w, and thus sup Pp, > ¢(w) for
each u < w, which implies limy,,, (sup Pg,,) > @(w), since the sequence of suprema is
nonincreasing.

Next, we prove that SafetyCl(®)(w) = SafetyCl(SafetyCl(P))(w) for all w € ¥¥. Re-
call from the first paragraph that sup,,csw SafetyCl(®)(uw') < sup, ese P(uw') for
all w € ¥*. So, for every w € ¥, we have inf,_,, sup, cse SafetyCl(P)(uw’) <
infy, < SUp,yexe P(uw’) and thus SafetyCl(SafetyCl(P))(w) < SafetyCl(P)(w) for all
w € X¥. Since we also have SafetyCl(SafetyCl(®))(w) > SafetyCl(P)(w), then the
equality holds for all w € X%.

Next, we prove that @ is safe iff #(w) = SafetyCl(P)(w) for all w € ¥¥. The right-
to-left implication follows from the fact that SafetyCIl(®) is safe, as proved above
in item (1). Now, assume @ is safe, i.e., for all w € ¥ and v € D if d(w) # v
then there exists u < w with sup, cso @(uw’) # v. Suppose towards contradiction
that for some z € X¥ we have @(x) < SafetyCl(P)(x) = infy<y SUp,esw P(uw’). Let
v = infy, <z SUp,ese @(uw’). Since @ is safe and $(x) # v, there exists v’ < x such
that sup,cyw @(v/w’) # v. Observe that for all x € ¥ and u; < uz < x we have
SUD,yexe P(ugw’) < sup,eyw P(u19g), i-e., the supremum is nonincreasing with longer
prefixes. Therefore, we have inf, ., sup, cye P(uw’) < sup, e @(v/w’). But since
SUP,exe P(u'w') # v, we get a contradiction.

Finally, we prove that SafetyCl(®) is the least safety property that bounds & from
above. Assume there exists a safety property ¥ such that ¢(w) < ¥(w) holds for
all w € ¥¥. Then, for every infinite word w € X% and all of its prefixes u < w
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we have @(uw’) < ¥(uw’) for all w' € X¢. It implies for every w € ¢ and every
u < w, we have sup,ese @(uw’) < sup,esw ¥(uw'). Then, for every w € X¥, we
have infy, 4y, SUp,yesw @(uw’) < infy iy, sup,esw ¥(uw’). By definition, this is the same
as SafetyCl(P)(w) < SafetyCl(¥)(w) for all w € £¥. Moreover, since ¥ is safe, it is
equivalent to its safety closure as we proved above, and thus SafetyCl(®)(w) < ¥(w) for
all w e X¥. [

We note that a property’s safety remains unaffected by the top value of its domain.

Remark 3.7. Consider a property @ : 3% — D. If @ is safe, it remains safe after removing
(resp. adding) values greater than Tg from D (resp. to D). In particular, consider the value
domains Dg = {v eD|v < Tg}and D' =DU{T'} with v < T’ for all v € D. It is easy to
see that if @ is safe, then @1 : ¥ — Dg and P9 : £ — D' where ¢(w) = &1 (w) = Po(w) for
all w € ¥ are also safe.

Recall that a safety property allows rejecting wrong lower-bound hypotheses with a
finite witness, by assigning a tight upper bound to each trace. We define co-safety properties
symmetrically: a property @ is co-safe iff every wrong hypothesis of the form @(w) < v has
a finite witness u < w.

Definition 3.8 (Co-safety). A property @ : ¥“ — I is co-safe when for every w € ¥* and
value v € D with @(w) £ v, there exists a prefix u < w such that inf,exw @(uw') £ v.

Definition 3.9 (Co-safety closure). The co-safety closure of a property @ is the property
CoSafetyCl(®)(w) defined by CoSafetyCl(P)(w) = sup,,,, infyrexe (uw') for all w e X,

It is easy to see that safety and co-safety are duals in the following sense.
Theorem 3.10. A property @ : ¥¥ — D is safe iff D is co-safe.

Thanks to Theorem 3.10, the duals of the results above for safety properties and the safety
closure operation hold for co-safety properties and the co-safety closure operation. To
demonstrate, let us define and investigate the mazimal response-time property.

Example 3.11. Let ¥ = {rq, gr, tk, 00} and D = NU{co}. We define the maximal response-
time property @y ax through an auxiliary property that computes the current response time
for each finite trace. In particular, for all u € 3*, let meurr(u) = |ulex — |t/|tx, Where v/ < u
is the longest prefix of u without pending rq. Then, let Tmax(u) = maxy, <y, Teurr(v) for
all u € ¥*) and Ppax(w) = limy <y Teurr(v) for all w € X¢. The limit always exists because
Tmax 1s nondecreasing. Note the contrast between 7.y and m,s; from Example 3.2. While
Teurr takes an optimistic view of the future and assumes the gr will follow immediately, 7,4t
takes a pessimistic view and assumes the gr will never follow. Now, let w € ¥¥ and v € D.
If the maximal response time of w is strictly greater than v, then for some prefix u < w
the current response time is strictly greater than v also, which means that, no matter what
happens in the future, the maximal response time is strictly greater than v after observing
u. Therefore, @,,.x is co-safe. By a similar reasoning, the sequence of greatest lower bounds
of possible prediction values over the prefixes converges to the property value. In other
words, we have sup,, ,, inf,yexw Pmax(U') = Pmax(w) for all w € ¢, thus Ppax equals its
co-safety closure. Now, consider the property @,.x, which maps every trace to the same
value as @pax on a value domain where the order is reversed. It is easy to see that @ is
safe. Finally, recall the ghost monitor from the introduction, which maintains the infimum
of possible prediction values for the maximal response-time property. Since the maximal
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response-time property is inf-closed, the output of the ghost monitor after every prefix is
realizable by some future continuation, and that output is mmax (1) = max,/ <y, Teurr(u’) for
all u € ¥*.

Although minimal and maximal response-time properties are sup- and inf-closed, let us
note that safety and co-safety are independent of sup- and inf-closedness.

Proposition 3.12. There is a property @ that is safe and co-safe but neither sup- nor
inf-closed.

Proof. Let ¥ = {a,b} be an alphabet and D = {v;,v2, L, T} be a lattice where v; and v
are incomparable. Let &(w) = v if a < w and @(w) = vy if b < w. The property @ is safe
and co-safe because after observing the first letter, we know the value of the infinite word.
However, it is not sup-closed since sup,,cxw @(w) = T but no infinite word has the value T.
Similarly, it is not inf-closed either. L]

3.1. Threshold Safety. In this section, we define threshold safety to connect the boolean
and the quantitative settings. It turns out that quantitative safety and threshold safety
coincide on totally-ordered value domains.

Definition 3.13 (Threshold safety). A property @ : ¥ — D is threshold safe when for
every v € D the boolean property @, is safe (and thus @y, is co-safe). Equivalently, for
every w € X¥ and v € D if &(w) # v then there exists u < w such that for all w' € 3% we
have ®(uw') # v.

Definition 3.14 (Threshold co-safety). A property @ : ¥ — D is threshold co-safe when
for every v € D the boolean property @4, is co-safe (and thus @<, is safe). Equivalently, for
every w € X¢ and v € D if @(w) £ v then there exists u < w such that for all w’ € X% we
have @(uw') £ v.

In general, quantitative safety implies threshold safety, but the converse need not hold
with respect to partially-ordered value domains.

Proposition 3.15. Every safety (resp. co-safety) property is threshold safe (resp. threshold
co-safe), but not vice versa.

Proof. Consider a property @ over the value domain ID. Observe that for all v € ¥* and all
v € D, we have that sup,cye @(uw’) # v implies ¢(uw) # v for all w € X¥. If P is safe
then, by definition, for every w € ¢ and value v € D if &(w) # v, there is a prefix u < w
such that sup,,csw @(uw’) 2 v. Thanks to the previous observation, for every w € ¥ and
value v € D if (w) # v then there exists u < w such that @(uw’) # v for all w’ € ¥, Hence
@ is threshold safe. Proving that co-safety implies threshold co-safety can be done similarly.

Consider the value domain D = [0, 1] U {x} where z is such that 0 < z and = < 1, but it
is incomparable with all v € (0, 1), while within [0, 1] there is the standard order. Let @ be a
property defined over ¥ = {a,b} as follows: ¢(w) = z if w = a*, d(w) = 27 1Vle if w € b,
and @(w) = 0 otherwise.

First, we show that & is threshold safe. Let w € ¥* and v € D. If v = x, then
D>, = {a¥, 0"}, which is safe. If v =0, then &>, = X%, which is safe as well. Otherwise, if
v € (0, 1], there exists n € N such that the boolean property ®>, contains exactly the words
w’ such that |w'|, < n, which is again safe. Therefore @ is threshold safe.
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Now, we show that @ is not safe. To witness, let w = a“ and v € (0,1). Observe that
&(w) # v. Moreover, for every prefix u < w, there exist continuations w; = a* and wg = b
such that @(uw;) = x and @(uws) € (0,1). Then, it is easy to see that for every prefix u < w
we have sup,,csw @(uw’) = 1 > v. Therefore, @ is not safe. Moreover, its complement @ is
threshold co-safe but not co-safe. []

While safety and threshold safety can differ when considering a single fixed threshold, the
two definitions are equivalent on totally-ordered domains since both inherently quantify over
all thresholds.

Theorem 3.16. Let D be a totally-ordered value domain. A property @ : X% — D is safe
(resp. co-safe) iff it is threshold safe (resp. threshold co-safe).

Proof. We prove only the safety case; the co-safety case follows by duality. Consider a
property @ : 3* — D where D is totally ordered. By Proposition 3.15, if @ is safe then it is
also threshold safe.

For the other direction, having that @ is not safe, i.e., for some w; € 3“ and v; € D
for which ®(w;) < v1, and every prefix u; < wy satisfies that sup,,cyo P(uw) > vi, we
exhibit we € ¥¥ and v € D for which &(wq) < vy, and every prefix us < we admits a
continuation w € 3¢ such that ®(usw) > vy. We proceed case by case depending on how
SUpPyexnw P(uw) > vy holds.

o Suppose sup,exw P(uiw) > vq for all u; < wy. Then, let wy = w; and vy = v1, and observe
that the claim holds since the supremum is either realizable by an infinite continuation or
it can be approximated arbitrarily closely.

e Suppose sup,eye P(uiw) = vy for some u; < wy, and for every finite continuation
u1 < r < wj there exists an infinite continuation w’ € X% such that @(rw’) = vy. Then, let
we = w1 and ve = w1, and observe that the claim holds since the supremum is realizable
by some infinite continuation.

e Suppose sup,eyw P(uiw) = vy for some u; < wi, and for some finite continuation
u; < r < wy, every infinite continuation w’ € X¥ satisfies @(rw’) < v;. Let 7 be the
shortest finite continuation for which @(rw’) < vy for all w’ € ¥£¥. Since @(w;) < v1 and
D is totally ordered, there exists vy such that @(w;) < vy < v1. We recall that, from
the nonsafety of @, all prefixes u; < w; satisfy sup,csw P(uiw) > v1 > vo. Then, let
wy = w; and @(w;) < vy < vy, and observe that the claim holds since the supremum can
be approximated arbitrarily closely. L]

Finally, we also show that the two definitions coincide for sup-closed properties.

Proposition 3.17. Let ¢ : ¥ — D be a sup-closed (resp. inf-closed) property. Then, ® is
safe (resp. co-safe) iff it is threshold safe (resp. threshold co-safe).

Proof. We prove only the safety case; the co-safety case follows by duality. Consider a
sup-closed property @ : 3% — ID. By Proposition 3.15, if @ is safe then it is also threshold
safe. For the other direction, suppose @ is threshold safe. Let w € ¥X* and v € D be such
that @(w) # v. Then, there exists u < w such that ®(uw’) 2 v for all w’ € X¥. Since
@ is sup-closed, there exists w € X with &(u) = sup,cyw P(uw'). Therefore, we have
SUp,exw P(uw’) # v, implying that & is safe. ]
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3.2. Continuity and Discounting. We move next to the relation between safety and
continuity. We recall some standard definitions; more about them can be found in textbooks,
e.g., [HR86, GG99, GHKT03].

A topology of a set X can be defined to be its collection 7 of open subsets, and the pair
(X, 7) stands for a topological space. 1t is metrizable when there exists a distance function
(metric) d on X such that the topology induced by d on X is .

Given a topological space (X,7), a set S C X is closed in (X, 7) iff its complement
S = X\ S isopenin (X, 7). Moreover, given a set S C X, the topological closure TopolCI(.S)
of S is the smallest closed set that contains S, and the topological interior Topollnt(S) of S
is the greatest open set that is contained in S.

The Cantor space of infinite words is the set 3¢ with the metric p : ¢ x 3¢ — [0, 1]
such that p(w,w) = 0 and p(w,w’) = 271l where v € X* is the longest common prefix
of w,w’ € X% with w # w’. Accordingly, a set P C X“ is open in the Cantor space of
infinite words iff for every w € P there exists a prefix © < w such that u>* C P. Let
D be a value domain and S C D a subset. Let 1§ = {y € D |Jx € S : x < y} and
1S={yeb|3zeS:y<uz}

A set S C D is upward directed iff for every x,y € S there is z € S such that x < z and
y <z Aset SCDis Scott open iff (i) S =15, and (ii) sup V' € S implies V N .S #  for all
upward-directed sets V C . A set S C D is Scott closed iff its complement S is Scott open.
The Scott topology on a complete lattice D is the topology induced by the Scott open sets of
D. Considering the Scott topology on D, we have TopolCl({v}) = | {v} for every v € D.

The dual Scott topology on D is the Scott topology on the inverse D of ID. An equivalent
definition can be obtained by using the duals of above notions as follows. A set S C D
is downward directed iff for every x,y € S there is z € S such that z < x and z < y. A
set S C D is dual Scott open iff (i) S =15, and (ii) inf V € S implies VN S # ) for all
downward-directed sets V C . A set S C D is dual Scott closed iff its complement S is
dual Scott open. Then, the dual Scott topology on a complete lattice D is the topology
induced by the dual Scott open sets of . Considering the dual Scott topology on D, we
have TopolCl({v}) = 1{v} for every v € D.

Consider a totally-ordered value domain D. For each element v € D, let L, = {v' €
D| v <wv}and R, = {v € D| v <v'}. The order topology on D is generated by the set
{L, | veD}U{R, | v € D}. Moreover, the left order topology (resp. right order topology) is
generated by the set {L, | v € D} (resp. {R, | v € D}).

For a given property @ : 3 — D and a set V C DD of values, the preimage of V on @ is
defined as @~ 1(V) = {w € ¥ | &(w) € V}. A property & : X* — D on a topological space
D is continuous when for every open subset V C ID the preimage ¢~1(V) C ¢ is open.

In [HS21], a property @ is defined as co-continuous when @(w) = limy, <., SUp,,/eyw (uw’)
and as continuous when @(w) = limy <, infyese @(uw’) for all w € ¥¥, extending the
standard definitions of upper semicontinuity and lower semicontinuity for functions on
extended reals to functions from infinite words to complete lattices. Co-continuity and
continuity respectively coincide with safety and co-safety properties. This characterization
holds because each definition is equivalent to a property expressing the same function as its
corresponding closure (see Theorem 3.6). We complete the picture by providing a purely
topological characterization of safety and co-safety properties in terms of their continuity.

Theorem 3.18. Consider a property @ : ¥ — D. If & is safe (resp. co-safe), then it is
continuous with respect to the dual Scott topology (resp. Scott topology) on D.
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Proof. Let @ : X% — D be a property. We prove the statement for safety properties. The
case of co-safety is dual.

Assume @ is safe. Let S C ID be an open set and suppose towards contradiction that
@~1(S) C 2 is not open. There exists a word w € ¢~ 1(S) such that for every prefix u < w
there exists a continuation w’ such that uw’ ¢ #~1(S). It implies that for each such prefix
u, we have sup,csw @(uw') ¢ S. For each ¢ > 1, let u; < w be of length ¢, and consider
the set V = {sup,exne @(ujw’) | u; < w}. Observe that V is a downward-directed set. If
inf V € S, since S is open, we have VNS # 0, i.e., sup,exw @(ww’) € S for some u; < w.
Then, we have &(u;w’) € S for all w’ € ¥¢ since S = |.S, which contradicts the supposition
that #71(S) C ¥ is not open. If inf V' ¢ S, then observe that inf V = SafetyCl(®P)(w).
Moreover, SafetyCl(®)(w) = $(w) since P is safe, which implies inf V' € S since &(w) € S,
which is a contradiction. Therefore, ®~1(S) C ¥¢ is open, and thus @ is continuous. ]

The converse does not hold in general essentially due to the fact that the safety closure
values may be unrealizable.

Proposition 3.19. There exists a property @ : ¥¥ — D that is continuous with respect to
the dual Scott topology (resp. Scott topology) on D but not safe (resp. co-safe).

Proof. Let us recall the property @ from the proof of Proposition 3.15: Consider the value
domain D = [0, 1] U {x} where z is such that 0 < z and x < 1, but it is incomparable with
all v € (0,1), while within [0, 1] there is the standard order. Let @ be a property defined
over ¥ = {a, b} as follows: ®(w) = z if w = a*, H(w) = 27 la if w € L*B¥, and H(w) =0
otherwise. We showed in the proof of Proposition 3.15 that @ is not safe. Below, we show
that @ is continuous with respect to the dual Scott topology on . One can symmetrically
show that @ is continuous with respect to the Scott topology on D but not co-safe.

Let us identify the open subsets of ID. The sets () and D are open in DD as they are open
in any topology. Moreover, notice that every open subset containing 1 is exactly the entire
value domain due to the downward closure requirement. Now, consider a subset S C ID with
1 ¢ S. We argue that if S is open, it is either of the form [0,7) or [0,7) U {z} for some
r € (0,1].

First, consider the case when = ¢ S. Notice that again due to the downward closure
requirement the set S must contain an interval I C [0, 1] with 0 € I. Moreover, the interval
I cannot contain its upper bound. Suppose towards contradiction that I = [0, 7] for some
r € [0,1]. If r = 1, then S = [0, 1], which is not open because it violates the downward
closure requirement since z ¢ S. If r < 1, then S = [0,r], which is not open because
V = (r,1] is a downward-directed set with infV = r € S but VNS = (). Therefore, if
x ¢ S, then S is of the form [0, r) for some r € (0, 1]. For the case of x € S, notice that the
inclusion of x in .S does not affect the downward closure requirement. Moreover, the only
downward-directed sets whose infimum is z are {z} and {z, 1}, and their intersection with
S is not empty as x € S. Therefore, if z € S, then S is of the form [0,r) U {z} for some
r e (0,1].

Now, let us show that @ is continuous. If S = () (resp. D), then we have &~1(S) = ()
(resp. %), which is evidently open in the Cantor topology of ¥“. Suppose S = [0,r) for
some r € (0,1]. Let k. = min{k € N | 2% < 7}. Then, observe that ®~1(9) is exactly the
set of infinite words w where w contains at least k, occurrences of a and at least one b, which
is an intersection of two open sets, and thus open. Finally, suppose S = [0,7) U {z} for some
r € (0,1]. Let k, be as above, and notice that @~1(S) is exactly the set of infinite words w
where w contains at least k, occurrences of a, which is open. Therefore, @ is continuous. []



Vol. 21:2 SAFETY AND LIVENESS OF QUANTITATIVE PROPERTIES AND AUTOMATA 2:17

Next, we examine the relation between threshold safety and continuity with respect to the
dual Scott topology. We show in particular that continuity implies threshold safety.

Theorem 3.20. Consider a property @ : 3% — D. If @ is continuous with respect to the
dual Scott topology (resp. Scott topology) on D, then it is threshold safe (resp. threshold
co-safe).

Proof. Let @ : X — D be a property. We prove the statement for safety properties. The
case of co-safety is dual.

Assume @ is continuous, i.e., for every open set S C I the preimage ®~!(S) is open.
We want to show that & is threshold safe, i.e., %, = {w € X | &(w) 2 v} is co-safe in the
boolean sense for every v € D. Let v € D and notice that $y, = &1 (1{v}). Since the set
T{v} is open in D and @ is continuous, its preimage ®x, is open in 3¢, i.e., co-safe in the
boolean sense. Therefore, @ is threshold safe. L]

Moreover, we establish that the inclusion is strict: there is a threshold safety property that
is not continuous with respect to the dual Scott topology.

Proposition 3.21. There exists a property @ : 3% — D that is threshold safe (resp. threshold

co-safe) but not continuous with respect to the dual Scott topology (resp. Scott topology)
on D.

Proof. Let ¥ = {a, b} be a finite alphabet. Consider the value domain D = ¥“ U {1, T}
where for every x € D we have T > x and x > 1, but the elements from %% are incomparable
with each other. Let @ : ¥“ — D be such that &(w) = w for all w € ¥¥.

We show that @ is threshold safe, i.e., for every w € ¥* and every v € D with &(w) 2 v
there exists u < w such that for every w’ € X we have ¢(uw’) # v. Let w € ¢ and v € D.
If v = T, the finite witness for &(w) 2 T is the empty word since no infinite word has the
value T. If v < T, we have &(w) 2 v iff v € 3¢ and w # v since @ is the identity function
on X¥ and the elements from ¥“ are incomparable. Observe that two infinite words are
distinct iff there is a finite word that is a prefix of one and not the other. Then, such a
prefix of w is the finite witness for &(w) 2 v. Therefore, ¢ is threshold safe.

We show that @ is not continuous with respect to the dual Scott topology on D. Let
P C 3% be a set of infinite words. First, we argue that S = PU{_L} is open in D. The set
S is downward closed because for every w € P the only element smaller than w is 1, which
isin S. Let V be a downward-directed subset of D. If 1. € V, then infV = 1 € S and we
have VNS # (). If L ¢ V, then V contains at most one element from X* (otherwise we
would have 1 € V since V is downward directed). If V' contains no elements from 3¢, then
it is either () or {T}, and thus inf V =T ¢ S. If V contains some element w from X¢, we
have inf V' = w. Moreover, if inf V' € S, then clearly w € S and thus V NS # (.

Now, let P = ¥*a“. As we proved above, the set S = P U {L} is open in D. However,
its preimage ®~!(S) is exactly the set P, which is not open in X“. Therefore, @ is not
continuous.

The property @ above and the same arguments also cover the case of co-safety. []

An immediate result of Theorems 3.18 and 3.20 is that whenever safety and threshold safety
coincide, they also coincide with continuity with respect to the dual Scott topology. In
particular, thanks to Proposition 3.17, we obtain the following.
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Corollary 3.22. Consider a sup-closed (resp. inf-closed) property @ : ¥ — D. Then, ® is
safe (resp. co-safe) iff it is continuous with respect to the dual Scott topology (resp. Scott
topology) on D.

Moreover, for totally-ordered value domains I, it is well known that a property is continuous
with respect to the dual Scott topology (resp. Scott topology) on D iff it is continuous with
respect to the left order topology (resp. right order topology) on D, which coincides with
upper semicontinuity (resp. lower semicontinuity) when D = R U {—o00, +0c}. Then, thanks
to Theorem 3.16, we get the following.

Corollary 3.23. Let D be a totally-ordered value domain. A property @ : 3% — D is safe
(resp. co-safe) iff it is continuous with respect to the left order topology (resp. right order
topology) on D.

Finally, since a property is continuous with respect to the order topology on D iff it is
continuous with respect to both left and right order topologies on I, we immediately obtain
the following.

Corollary 3.24. Let D be a totally-ordered value domain. A property @ : 3“ — D is safe
and co-safe iff it is continuous with respect to the order topology on D.

Now, we shift our focus to totally-ordered value domains whose order topology is metrizable.
We provide a general definition of discounting properties on such domains.

Definition 3.25 (Discounting). Let D be a totally-ordered value domain for which the
order topology is metrizable with a metric d. A property @ : ¥ — D is discounting when

for every € > 0 there exists n € N such that for every u € ¥" and w,w’ € X* we have
d(P(uw), P(uw')) < e.

Intuitively, a property is discounting when the range of potential values for every word
converges to a singleton. As an example, consider the following discounted safety property:
Given a boolean safety property P, let & be a quantitative property such that ®(w) = 1
if we P, and &(w) = 271" if w ¢ P, where u < w is the shortest bad prefix of w for
P. We remark that our definition captures the previous definitions of discounting given
in [dAHMO03, ABK14].

Remark 3.26. Notice that the definition of discounting coincides with uniform continuity.
Since X* equipped with Cantor distance is a compact space, every continuous property is
also uniformly continuous by Heine-Cantor theorem, and thus discounting.

As an immediate consequence, we obtain the following.

Corollary 3.27. Let D be a totally-ordered value domain for which the order topology is
metrizable. A property @ : X% — D is safe and co-safe iff it is discounting.

Let P C X“ be a boolean property. Recall that TopolCI(P) is the smallest boolean safety
property that contains P, and Topollnt(P) of P is the greatest boolean co-safety property
that is contained in P. To conclude this subsection, we show the connection between
the quantitative safety closure (resp. co-safety closure) and the topological closure (resp.
topological interior) through sup-closedness (resp. inf-closedness). The sup-closedness
assumption makes the quantitative safety closure values realizable. This guarantees that for
every value v, every word whose safety closure value is at least v belongs to the topological
closure of the set of words whose property values are at least v. Similarly, the inf-closedness
assumption helps in the case of co-safety and topological interior.
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Theorem 3.28. Consider a property @ : 3% — D and a threshold v € D. If & is sup-
closed, then (SafetyCl(P))>y = TopolCl(P>,). If P is inf-closed, then (CoSafetyCl(P))<, =
TopolInt(P<,).

Proof. First, we observe that for all u € ¥*, if sup,,y 5w @(uw’) 2 v then for every w € X¢, we
have @(uw) # v. Next, we show that TopolCl(P>,) C (SafetyCl(P))>,. Suppose towards con-
tradiction that there exists w € TopolCl(P>y) \ (SafetyCl(P))>y, that is, SafetyCl(P)(w) # v
and w € TopolCl(P>,). This means that (i) inf, <, sup,ese @(uw’) # v, and (ii) for every
prefix u < w there exists w' € 3 such that @(uw’) > v. By the above observation, (i)
implies that there exists a prefix v’ < w such that for all w” € X* we have @(u'w”) % v,
which contradicts (ii).

Now, we show that if @ is sup-closed then (SafetyCl(®))>, C TopolCl(P>,). Sup-
pose towards contradiction that there exists w € (SafetyCl(®))>, \ TopolCl(P>,), that is,
SafetyCl(P)(w) > v and w ¢ TopolCl(P>,). By the duality between closure and interior, we
have w € Topollnt(Py,). Then, (i) inf, <y sup,ese P(uw’) > v, and (ii) there exists v’ < w
such that for all w” € ¥* we have @(u'w”) # v. Since @ is sup-closed, (i) implies that for
every prefix u < w there exists w’ € X such that ¢(uw’) > v, which contradicts (ii).

Proving that if @ is inf-closed then (CoSafetyCl(®))<, = Topolint(P<,) can be done
similarly, based on the observation that for all u € ¥*, if inf,exw @(uw’) £ v then for every

word w € ¥, we have ®(uw) £ v. ]

3.3. Additional Notions Related to Quantitative Safety. In [LDL17], the authors
consider the model-checking problem for properties on multi-valued truth domains. They
introduce the notion of multi-safety through a closure operation that coincides with our
safety closure. Formally, a property @ is multi-safe iff &(w) = SafetyCl(P)(w) for every
w € ¥¥. By Theorem 3.6, we immediately obtain the following.

Proposition 3.29. A property is multi-safe iff it is safe.

Although the two definitions of safety are equivalent, our definition is consistent with the
membership problem for quantitative properties and motivated by their monitoring.

In [GS22], the authors extend a refinement of the safety-liveness classification for
monitoring [PH18]| to richer domains. They introduce the notion of verdict-safety through
dismissibility of values not less than or equal to the property value. Formally, a property &
is verdict-safe iff for every w € ¥ and v £ ®(w), there exists a prefix u < w such that for
all w' € X¥, we have @(uw') # v.

We demonstrate that verdict-safety is weaker than safety. Moreover, we provide a
condition under which the two definitions coincide. To achieve this, we reason about sets of
possible prediction values: for a property ¢ and u € £*, let P, = {®(uw) | w € ¥¥}.

Lemma 3.30. A property @ is verdict-safe iff ®(w) = sup(limy<y Pap,) for all w € 3¢.

Proof. For all w € ¥¥ let us define P, = limy~w Poy = (), ~w Pou- Assume @ is verdict-safe
and suppose towards contradiction that @(w) # sup P, for some w € X¢. If ¢(w) £ sup Py,
then ®(w) ¢ P,, which is a contradiction. Otherwise, if &(w) < sup P,, there exists
v £ &(w) with w € P,. It means that there is no u < w that dismisses the value v £ @(w),
which contradicts the fact that @ is verdict-safe. Therefore, @(w) = sup P, for all w € ¥¥.

We prove the other direction by contrapositive. Assume @ is not verdict-safe, i.e., for
some w € X¥ and v £ P(w), every u < w has an extension w’ € X¥ with ¢(uw') = v.
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Equivalently, for some w € ¥* and v £ ¢(w), every u < w satisfies v € Pgp . Then, v € Py,
but since v £ $(w), we have sup P, > @(w). ]

Notice that @ is safe iff $(w) = limy<.,(sup Pp,,) for all w € ¥, thanks to Theorem 3.6.
Below we describe a property that is verdict-safe but not safe.

Example 3.31. Let ¥ = {a, b}. Define @ by ®(w) =0 if w = a*, and ¢(w) = |u| otherwise,
where u < w is the shortest prefix in which b occurs. The property @ is verdict-safe. First,
observe that D = NU {oo}. Let w € ¥ and v € D with v > &(w). If $(w) > 0, then w
contains b, and ¢(w) = |u| for some v < w in which b occurs for the first time. After the
prefix u, all w’ € ¢ yield ®(uw') = |u|, thus all values above |u| are rejected. If &(w) =0,
then w = a*. Let v € N with v > 0, and consider the prefix a¥ < w. Observe that the set of
possible prediction values after reading a is {0,v + 1,v + 2,...}, therefore a¥ allows the
ghost monitor to reject the value v. However, @ is not safe because, although @(a*) = 0, for
every u < a¥, we have sup, ey @(uw’) = oco.

The separation is due to the fact that for some finite traces, the sup of possible prediction
values cannot be realized by any future. This is not the case for the minimal response-time
property @nin from Example 3.2 because for every u € ¥* the continuation gr* realizes the
value sup,,csiw Pmin(uw’), and thus @iy is sup-closed.

Recall from the introduction the ghost monitor that maintains the sup of possible
prediction values. For monitoring sup-closed properties this suffices; otherwise the ghost
monitor also needs to maintain whether or not the supremum of the possible prediction
values is realizable by some future continuation. In general, we have the following for every
sup-closed property.

Lemma 3.32. Let ¢ be a sup-closed property. Then, limy, ., (sup Psp,,) = sup(limy~w Pe )
for all w e X¥.

Proof. Note that limy, ., (sup Pa ) > sup(limy <., Pg ) holds in general, and we want to show
that limy, <., (sup Py y) < sup(limy~, P ,,) holds for every sup-closed @. Let w € ¥%. Since
the sequence (P y,)u~<w Of sets is nonincreasing and sup Pg ., € Pg,, for every u € ¥* (thanks
to sup-closedness of @), we have sup Pg s € P, for every u, v’ € ¥* with u < /. Moreover,
limy, < (sup Pp) € Pg,y for every o/ € ¥* with «/ < w. Then, by definition, we have
limy, < (sup P ) € limy < Ppy, and therefore limy, <, (sup Pp,,) < sup(limy<w Po.y)- ]

As a consequence of the above, we get the following.

Theorem 3.33. Fvery safety property is verdict-safe, but not vice versa. Moreover, a
sup-closed property is safe iff it is verdict-safe.

Let us conclude with a remark on the form of hypotheses in our definition of safety.

Remark 3.34. Suppose we define safety with strict lower bound hypotheses instead of
nonstrict: for every w € ¥¢ and value v € D with @(w) % v, there is a prefix u < w such
that sup,eyw @(uw’) % v. Let w be an arbitrary word and consider v = @(w). It is clear
that this definition would require the sup of possible prediction values to converge to ®(w)
after a finite prefix, which is too restrictive.
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4. THE QUANTITATIVE SAFETY-PROGRESS HIERARCHY

The safety-progress classification of boolean properties [CMP93] is a Borel hierarchy built
from the Cantor topology of traces. Safety and co-safety properties lie on the first level,
respectively corresponding to closed sets and open sets. The second level is obtained through
countable unions and intersections of properties from the first level: persistence properties
are countable unions of closed sets, while response properties are countable intersections of
open sets. We generalize this construction to the quantitative setting.

In the boolean case, each property class is defined through an operation that takes a set
S C X* of finite traces and produces a set P C Y% of infinite traces. For example, to obtain
a co-safety property from S C ¥*, the corresponding operation yields S>“. Similarly, we
formalize each property class by a value function.

Definition 4.1 (Limit property). A property @ : ¥ — D is a limit property when there
exists a finitary property m : ¥* — DD and a value function Val : D* — I such that
&(w) = Valy<ym(u) for all w € . We denote this by & = (,Val). In particular, if
& = (7, Val) for Val € {Inf, Sup, LimInf, LimSup}, then & is a Val-property.

Remark 4.2. Every quantitative property @ : £ — I where |X| < |D] is a limit property
because 7 can encode infinite words through their prefixes and Val can map each infinite
sequence (corresponding to a unique infinite word) to the desired value. Below, we focus on
particular value functions (namely Inf, Sup, LimInf, LimSup) for which this is not possible.

To account for the value functions that construct the first two levels of the safety-progress
hierarchy, we start our investigation with Inf- and Sup-properties and later focus on LimInf-
and LimSup- properties.

4.1. Infimum and Supremum Properties. Let us start by showing that Inf-properties
are closed under countable infima.

Proposition 4.3. Fvery countable infimum of Inf-properties is an Inf-property.

Proof. Let ®&; = (m;,Inf) be for each i € N. Let ¢ = (m,Inf) where 7m(u) = inf;enm;(u)
for all w € ¥*. Let w € X¥ be arbitrary. We have @(w) = Infy~y infienymi(u) =
infieN Infu<w7ri (u) = infl-eN SPZ‘ (w)

We show below that Inf, ., inf;en m(u) = inf;en Infy <7 (u) holds. Note that we can
assume without loss of generality that for each ¢ € N, the finitary property m; is nonincreasing.
For each i € N, let z; = Inf,<,m;(u). For each u < w, let Ypu| = infien m;(u). Moreover, let
x = inf,eyx; and y = infjenyy;. Let us denote by u; the prefix of w of length j. For all
i,j € N, we have < z; < m;(u;) and y < y; < m;(uj). Then, z and y are lower bounds
on the set P = {m;(u;) | 4,5 € N}. Now, let z be another lower bound, i.e., z < m;(u;) for
all 4,j € N. For a fixed i € N, we still have z < 7;(u;) for all j € N. It means that z is a
lower bound on the sequence (7;(u))y<w and since x; is the infimum of this sequence, we
have z < z;. Moreover, since this holds for any ¢ € N and x = inf;cn x;, we have z < z. By
similar arguments, we obtain z < y. It implies that both x and y are the greatest lower
bound on P, which means & = y due to the uniqueness of greatest lower bound. []

Next, we demonstrate that the minimal response-time property is an Inf-property.

Example 4.4. Recall the safety property @i, of minimal response time from Example 3.2.
We can equivalently define @i, as a limit property by taking the finitary property mast
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and the value function Inf. As discussed in Example 3.2, the function 7, outputs the
response time for the last request when all requests are granted, and oo when there is a
pending request or no request. Then Infy, <, Tast(4) = Ppin(w) for all w € X, and therefore

Din = (Wlasty Inf)
In fact, the safety properties coincide with Inf-properties.
Theorem 4.5. A property @ is safe iff it is an Inf-property.

Proof. Assume @ is safe. By Theorem 3.6, we have @(w) = inf,, <y, sup,exno @(uw’) for all
w € X% Then, simply taking 7(u) = sup,eye @(uw’) for all u € X* yields that @ is an
Inf-property.

Now, assume @ is an Inf-property, and suppose towards contradiction that & is not
safe. In other words, let @ = (m,Inf) for some finitary property = : ¥* — D and suppose
Infy=g sup,exw @(uw’) > &(x) = Inf,4,m(u) for some z € ¥¥. Let u € ¥* and note that
SUP,enw P(uw’) = sup,yesw (Infy2uwm(w')) by definition. Moreover, for every w' € ¥¢,
notice that Inf,/ <y 7(v') < m(u) since v < ww’. Then, we obtain sup,cseo P(uw’) <
m(u) for every u € ¥*. In particular, this is also true for all u < z. Therefore, we get
Infy<z sup,exw @(uw') < Infy,,m(u), which contradicts to our initial supposition. ]

Notice that Proposition 4.3 and Theorem 4.5 imply a stronger closure result than Proposi-
tion 3.4: safety properties are closed under countable infima.

Defining the minimal response-time property as a limit property, we observe the following
relation between its behavior on finite traces and infinite traces.

Example 4.6. Consider the property @myin = (TMast, Inf) from Example 4.4. Let w € ¢ and
v € D. Observe that if the minimal response time of w is at least v, then the last response
time for each prefix u < w is also at least v. Conversely, if the minimal response time of w
is below v, then there is a prefix © < w for which the last response time is also below v.

In light of this observation, we provide another characterization of safety properties,
explicitly relating the specified behavior of the limit property on finite and infinite traces.

Theorem 4.7. A property @ : ¥ — D is safe iff & = (w,Val) such that for every w € X
and value v € D, we have ®(w) > v iff w(u) > v for all u < w.

Proof. Assume @ is safe. Then, we know by Theorem 4.5 that @ is an Inf-property, i.e.,
@ = (m,Inf) for some finitary property 7 : ¥* — D, and thus a limit property. Suppose
towards contradiction that for some w € ¥* and v € D we have (i) @(w) > v and 7(u) 2 v
for some u < w, or (ii) ¢(w) # v and 7(u) > v for every u < w. One can easily verify that (i)
yields a contradiction, since if for some u < w we have m(u) # v then Inf,—,7(u) = &(w) # v.
Similarly, (ii) also yields a contradiction, since if @(w) = Inf,<,m(u) 2 v then there exists
u < w such that 7(u) # v.

Now, assume ¢ = (7, Val) for some finitary property 7 and value function Val such
that for every w € ¢ and value v € D we have ®(w) > v iff w(u) > v for every u < w.
We claim that &(w) = Infy<,m(u) for every w € ¥, Suppose towards contradiction that
the equality does not hold for some trace. If @(w) # Infy<y,m(u) for some w € X¥, let
v = Inf, <7 (u) and observe that (i) @(w) 2 v, and (ii) Inf,<,7(u) > v. However, while (i)
implies 7m(u) # v for some u < w by hypothesis, (ii) implies 7(u) > v for all u < w, resulting
in a contradiction. The case where @(w) £ Inf, <, 7(u) for some w € ¥¥ is similar. It means
that @ is an Inf-property. Therefore, @ is safe by Theorem 4.5. []
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Finally, observe that the maximal response-time property is a Sup-property. As Sup-
properties and Inf-properties are dual, Sup-properties are closed under countable suprema
(see Proposition 4.3). Thanks to the duality between safety and co-safety, we also obtain
the following characterizations.

Theorem 4.8. For every property @ : ¥ — D, the following are equivalent.

(1) @ is co-safe.

(2) @ is a Sup-property.

(3) @ = (m, Val) such that for every w € £* and value v € D, we have @(w) < v iff m(u) < v
for all u < w.

4.2. Limit Inferior and Limit Superior Properties. Let us start with an observation
on the minimal response-time property.

Example 4.9. Recall once again the minimal response-time property @mi, from Example 3.2.
In the previous subsection, we presented an alternative definition of @i, to establish that
it is an Inf-property. Observe that there is yet another equivalent definition of @,;, which
takes the nonincreasing finitary property mpi, from Example 3.2 and pairs it with either the
value function LimlInf, or with LimSup. Hence @i, is both a LimInf- and a LimSup-property.

Before moving on to investigating LimInf- and LimSup-properties more closely, we show
that the above observation can be generalized.

Theorem 4.10. For each Val € {Inf,Sup}, every Val-property is both a LimInf- and a
LimSup-property.

Proof. Let @ = (m,Inf) and define an alternative finitary property as follows: #'(u) =
min,/ <, m(u). One can confirm that 7’ is nonincreasing and thus lim,,,, 7'(u) = Infy, <7 ()
for every w € X%. Then, letting #; = (7', LimInf) and &, = (7, LimSup), we obtain that
O(w) = P1(w) = Po(w) for all w € £¥. For Val = Sup we use max instead of min. ]

An interesting response-time property beyond safety and co-safety arises when we remove
extreme values: instead of minimal response time, consider the property that maps every
trace to a value that bounds from below, not all response times, but all of them from a point
onward (i.e., all but finitely many). We call this property tail-minimal response time.

Example 4.11. Let ¥ = {rq, gr, tk, 0o} and 7, be the finitary property from Example 3.2
that computes the last response time. We define the tail-minimal response-time property as
Dimin = (Tast, LimInf). Intuitively, it maps each trace to the least response time over all but
finitely many requests. This property is interesting as a performance measure, because it
focuses on the long-term performance by ignoring finitely many outliers. Consider w € ¥
and v € D. Observe that if the tail-minimal response time of w is at least v, then there is a
prefix u < w such that for all longer prefixes u < v’ < w, the last response time in v’ is at
least v, and vice versa.

Similarly as for Inf-properties, we characterize LimInf-properties through a relation
between property behaviors on finite and infinite traces.

Theorem 4.12. A property @ : ¥ — D is a LimInf-property iff & = (7, Val) such that for
every w € X¥ and value v € D, we have ®(w) > v iff there exists u < w such that for all
u=u < w, we have w(u') > v.
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Proof. Assume @ is a LimInf-property, i.e., & = (m,LimiInf) for some finitary property
m: X" — D. Suppose towards contradiction that for some w € ¥“ and v € D we have (i)
@(w) > v and for all u < w there exists u < v’ < w such that m(u’) 2 v, or (ii) ®(w) # v and
there exists u < w such that for all u < v/ < w we have w(u’) > v. One can easily verify that
(i) yields a contradiction, since if for all u < w there exists u < v/ < w with 7(u') 7 v, then
LimInfy,<,m(u) = @(w) # v. Similarly, (ii) also yields a contradiction, since if there exists
u < w such that for all u < ' < w we have 7(u’) > v then LimInf,<,7(u) = ®(w) > v.
Now, assume ¢ = (7, Val) for some finitary property m and value function Val such
that for every w € ¥* and value v € D we have ¢(w) > v iff there exists v < w such that
for all u <X v/ < w we have w(u') > v. We claim that &(w) = LimInf,<,7(u) for every
w € X¥. Suppose towards contradiction that the equality does not hold for some trace.
If &(w) # Liminfy<,m(u) for some w € ¢, let v = LimlInf,~,7m(u) and observe that (i)
&(w) 2 v, and (ii) LimInfy,<,m(u) > v. However by hypothesis, (i) implies that for all u < w
there exists u < v/ < w with m(u’) 2 v, which means that LimInf, -, 7(u) # v, resulting in
a contradiction to (ii). The case where @(w) £ LimlInf, <, m(u) for some w € ¥¢ is similar.
Therefore, @ is a LimInf-property. []

Next, we show that LimInf-properties are closed under pairwise minimum.

Proposition 4.13. For every value domain D, the set of LimInf-properties over D is closed
under min.

Proof. Consider two LimInf-properties ¢ = (71, LimInf), &3 = (72, LimInf) and let @ be as
follows: @ = (m, LimInf) where m(u) = min(m(u), ma(u)) for all u € ¥*. We now prove that
& (w) = min(P;(w), Pa(w)) for all w € ¥¢.

Suppose towards contradiction that min(®;(w), P2(w)) ;f &(w) for some w € X,
Observe that for all w’ € ¢ and v € D, if min(®;(w'), P2(w’)) # v then & (w') # v or
@2 ") # . We assume without loss of generality that 451( ) z &(w). By Theorem 4.12,

w) # @(w) implies that for all v’ < w there exists u’ < «” < w such that m (u”) # di(w).
Dually, since D(w) > P(w), there exists t < w such that 7(¢') > &(w) for all ¢t < ¢/ < w.
In particular, there exists ¢t < ¢ < w such that 7 (") #? @(w) and 7(t") > &(w). By the
definition of min, we have that (") > w(t") > ®(w) which contradicts that m(t") # &(w).
Hence, we proved that min(®;(w), Pa(w)) > ( ) for all w € .

Suppose towards contradlctlon that P(w) # min(Py(w), P2(w)) for some w € £¢. In
particular, LimInf, ., mrn(m( ), ) # mln 9151( ) @2( )) Observe that for all u € ¥*
and v € D, if min(m (u), ma(u)) £ v then 7r1 ) # v or ma(u) # v. We assume without loss
of generality that [{u | Ju -< o <w:m)F rmn (P1(w), P2(w))}| = o0, or equivalently for
all u < w, there exists u < v/ < w such that 7 (u') # min(®(w), 452(w)). By Theorem 4.12,
we get @1(w) # min(P;(w), P2(w)). By the definition of min, we have that &;(w) >
min(® (w ) @y (w)) which contradicts that @1 (w) # min(Pq(w), P2(w)). Hence, we proved
that @(w) > min(P(w), P2(w)) for all w € X«. ]

Now, we show that the tail-minimal response-time property can be expressed as a countable
supremum of Inf-properties.

Example 4.14. Let ¢ € N and define 7; 1,5; as a finitary property that imitates m,g; from
Example 3.2, but ignores the first ¢ observations of every finite trace. Formally, for all u € ¥*,
we define 7 jast(u) = Tast(v') if u = wju' where u; < w with |u;] = 4 and v/ € ¥*, and
Tilast (u) = 0o otherwise. Observe that an equivalent way to define @i, from Example 4.11
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is sup; ey (Infy<uw (i last (1)) for all w € X“. Intuitively, for each i € N, we obtain an Inf-
property that computes the minimal response time of the suffixes of a given trace. Taking
the supremum over these, we obtain the greatest lower bound on all but finitely many
response times.

We generalize this observation and show that every Limlnf-property is a countable
supremum of Inf-properties.

Theorem 4.15. Every LimInf-property is a countable supremum of Inf-properties.

Proof. Let @ = (m, LimInf). For each i € N let us define ¢; = (7;, Inf) where 7; is as follows:
mi(u) = T if |u| < 4, and m;(u) = 7(u) otherwise. We claim that @(w) = sup;cy @i(w)
for all w € ¥“. Expanding the definitions, observe that the claim is LimiInf,<,7(u) =
sup;ey Infu<wmi(u). Due to the definition of LimInf, the expression sup;cy Infy,unju)>iT(®)
equals the left-hand side. Moreover, by the definition of m;, it equals the right-hand side. []

We would also like to have the converse of Theorem 4.15, i.e., that every countable supremum
of Inf-properties is a LimInf-property. Currently, we are able to show only the following.

Proposition 4.16. Consider an infinite sequence (P;);en of properties with ®; = (m;, Inf)
for each i € N. The property & = (m,Liminf) where m(u) = max;<, mi(u) for all u € ¥*
satisfies sup;ey Pi(w) < @(w) for all w € X¥.

Proof. For each i € N, assume without loss of generality that each m; is nonincreasing. Let
@ = (m, LimInf) be as in the statement. We want to show that sup,cy @i(w) < @(w) for allw €
¥“. Expanding the definitions, observe that the claim is the following: sup;cy(Infy<wmi(u)) <
LimInfy, <., (max;<,, 7;(u)) for all w € X¢.

Let w € ¥¢, and for each k € N, let n, = max;<, Inf,<,mi(u) and my = max;<j m;(ug)
where up < w with |ug| = k. Observe that we have ny < my for all & € N. Then,
we have liminfy_, ng < liminfy_,, mg. Moreover, since the sequence (ny)ren is nonde-
creasing, we can replace the liminf on the left-hand side with lim to obtain the following:
limy,_, oo max; <, Infy<ymi(v) < liminfy_, o max;<g m;(ug). Then, rewriting the expression
concludes the proof by giving us sup;ey(Infu<wmi(u)) < Limlnfy, <, (max; <y, mi(u)). ]

Remark 4.17. Consider an infinite sequence (®;);en of finitely-converging Inf-properties, i.e.,
for every i € N and every infinite word w there is a prefix u < w such that @;(w) = @(uw’)
for all continuations w’. Evidently, each ®; is also a Sup property. Moreover, since Sup-
properties are closed under countable suprema, sup;cy ®; is a Sup-property, and thus a
LimInf-property by Theorem 4.10.

We conjecture that some LimInf-property that is an upper bound like in Proposition 4.16
is also a lower bound on the countable supremum that occurs in the theorem. (The property
& in Proposition 4.16 is not one.) This, together with Proposition 4.16, would imply the
converse of Theorem 4.15. Proving the converse of Theorem 4.15 would give us, thanks to
the following duality, that the LimInf- and LimSup-properties respectively characterize the
countable suprema of Inf-properties and countable infima of Sup-properties, completing the
picture for the generalization of the safety-progress hierarchy to the quantitative setting.

Proposition 4.18. A property ® is a LimInf-property iff its complement @ is a LimSup-
property.
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5. QUANTITATIVE LIVENESS

A boolean property P C X% is live in the boolean sense iff for every u € ¥* there exists
w € X¥ with uw € P [AS85], in other words, a wrong membership hypothesis can never be
dismissed by a finite prefix. Similarly as for safety, we take the perspective of the quantitative
membership problem to define liveness: a property @ is live iff whenever a property value is
less than T, there exists a value v for which the wrong hypothesis ¢(w) > v can never be
dismissed by any finite witness u < w.

Definition 5.1 (Liveness). A property @ : X — D is live in D when for all w € ¢, if
&(w) < T, then there exists a value v € D such that ¢(w) # v and for all prefixes u < w,
we have sup,cse @(uw’) > v.

When we write that a property @ : 3“ — D is live (instead of live in D), we mean that
@ is live in the value domain Dg = {v € D | v < Tg}, and we let T = supDg. This is
motivated by the following remark showing that a property’s liveness may be closely tied to
its value domain.

Remark 5.2. Liveness of a property may depend on the top value of its value domain.
Consider a liveness property @ : ¥“ — D and the value domains Dg = {v € D | v < Tg}
and D/ =DU{T'} with v < T’ for all v € D.

The property @1 : ¥ — Dg where &(w) = &1 (w) for all w € £ is also live in Dg. This
is easy to see by definition. For words w € X* with @(w) = T4, the property is vacuously
live in Dg, and those with &(w) < T, it is live in Dg thanks to its liveness in D.

In contrast, @o : X — D' where &(w) = Po(w) for all w € X« may be not live in I'. For
example, consider ¥ = {a,b} and D = {0, x,y,1} where 0 < x < 1 and 0 < y < 1 but x and
y are incomparable. Let &(w) = z if w € ¥*a¥, let &(w) =y if w € £*b*, and let P(w) =1
otherwise. The property @ is live in D since Tg = supD = 1 and sup,,cyw @(uw) =1 for
every u € X*. However, considering the domain D' = DU {2} with 1 < 2, the same property
is not live in ' because @((ab)¥) = 1 and the only wrong lower bound hypothesis for (ab)®
is supD’ = 2, which can be dismissed as sup,,cy. @(uw) = 1 for every prefix u < (ab)®. In
fact, for every property @ : X¥ — D, if Tg < T and T¢ is attainable by some word, then &
is not live in D.

Let us first show that our definition of liveness generalizes the boolean one.

Proposition 5.3. Quantitative liveness generalizes boolean liveness. In particular, for every
boolean property P C 3%, the following statements are equivalent:

(1) P is live according to the classical definition [AS85].
(2) The characteristic property @p is live in B.

Proof. Recall that (1) means the following: for every w ¢ P and every u < w there exists
w’ € ¥¥ such that uw’ € P. Expressing the same statement with the characteristic property
@p of P gives us the following: for every w € ¢ if &p(w) < 1 then for every u < w there
exists w’ € X% such that ®p(uw’) = 1. Since B = {0,1} and 0 < 1, it is easy to see that this
statement is equivalent to the definition of liveness in B. ]

Next, we provide a characterization of liveness through the safety closure operation.

Theorem 5.4. A property @ is live iff SafetyCl(P)(w) > ®(w) for every w € ¢ with
D(w) < T.
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Proof. First, suppose @ is live. Let w € X“ be such that ¢(w) < T, and let v be
as in the definition of liveness. Since sup,ycsw @(uw’) > v for all prefixes v < w, we
have that SafetyCl(®)(w) > v. Moreover, since v £ ¢(w), we are done. Now, suppose
SafetyCl(®)(w) > &(w) for every w € ¢ with &(w) < T. Let w € ¥ be such a trace,
and let v = SafetyCl(P)(w). It is easy to see that v satisfies the liveness condition since
SafetyCl(P)(w) = inf <y Sup,eye P(uw’) > G(w). []

We show that liveness properties are closed under pairwise max considering totally-ordered
value domains.

Proposition 5.5. For every totally-ordered value domain D, the set of liveness properties
over D is closed under max.

Proof. Consider two properties @1, P2 : 3 — D that are live in D. Let @ be their pairwise
maximum, i.e., ®(w) = max(P;(w), P2(w)) for all w € 3. We show that ¢ fulfills the
liveness definition for all w € ¥¢. If &;(w) = T or $2(w) = T then &(w) = T. Otherwise,
for each i € {1,2}, there exists v; such that ®;(w) < v;, and for all u < w we have
SUp,exw Pi(uw’) > v;. Hence, because D is totally-ordered, defining v = max(vy, ve) implies
P(w) < v as well as sup,y ey P(uw’) > v for all u < w. ]

As in the boolean setting, the intersection of safety and liveness contains only the degenerate
properties that are constant, i.e., always output T.

Proposition 5.6. A property @ is safe and live iff ®(w) = T for all w € X¢.

Proof. Observe that the constant function @ = T is trivially safe and live. Now, let @ be a
property that is both safe and live, and suppose towards contradiction that ®(w) < T for
some w € X, Since @ is live, there exists a value v with @(w) # v such that for all u < w,
we have sup,,cs.w @(uw’) > v. In particular, inf, <, sup, ey @(uw’) > v and ¢(w) # v hold,
implying SafetyCl(®)(w) > ¢(w) by definition of safety closure and Theorem 3.6. Then,
again by Theorem 3.6, this contradicts the assumption that @ is safe. []

We define co-liveness symmetrically, and note that the duals of the statements above also
hold for co-liveness.

Definition 5.7 (Co-liveness). A property @ : ¥ — D is co-live in D when for all w € ¥,
if @(w) > L, then there exists a value v € D such that $(w) £ v and for all prefixes u < w,
we have inf,/exw @(uw') < v.

Next, we present some examples of liveness and co-liveness properties. We start by
showing that LimInf- and LimSup-properties can be live and co-live.

Example 5.8. Let ¥ = {a, b} be an alphabet, and let P = (¥*a)“ (infinitely many a’s) and
Q@ = X\ P (finitely many a’s) be boolean properties. Consider their characteristic properties
&p and Pg. As we pointed out earlier, our definitions generalize their boolean counterparts,
therefore @p and &g are both live and co-live. Moreover, @p is a LimSup-property: define
mp(u) =1if u € ¥*a, and mp(u) = 0 otherwise, and observe that ®p(w) = LimSup,, ., mp(u)
for all w € X*. Similarly, $¢ is a LimInf-property.

Now, we show that the maximal response-time property is live, and the minimal response
time is co-live.
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Example 5.9. Recall the co-safety property @« of maximal response time from Exam-
ple 3.11. Let w € ¥* such that @pax(w) < co. We can extend every prefix u < w with
w' = rqtk¥, which gives us @Ppax(uw’) = oo > @(w). Equivalently, for every w € ¢, we
have SafetyCl(Pmax)(w) = 00 > Ppax(w). Hence Py, is live and, analogously, the safety
property @i, from Example 3.2 is co-live.

We next present the average response-time property and show that it is live and co-live.

Example 5.10. Let ¥ = {rq,gr,tk,oo}. For all u € ¥* let p(u) = 1 if there is no
pending rq in u, and p(u) = 0 otherwise. Define myaq(u) = [{v/ < u | " € X* : v/ =
u’rq A p(u”) = 1}| as the number of valid requests in u, and define mime(u) as the total
number of tk observations that occur after a valid rq and before the matching gr. Then,

Povg = (Tavg, LimInf), where maye(u) = 7“”“76((“)) for all u € ¥* with myauq(uw) > 0, and

Tyalid (¥

Tavg (1) = 0o otherwise. For example, Tayg(u) = 3 for u = rqtkgr tkrqtkrqtk. Note that
Pavg is a LimInf-property.

The property Pay, is defined on the value domain [0, 00| and is both live and co-live.
To see this, let w € ¥ such that 0 < @,vs(w) < 0o and, for every prefix u < w, consider
w' = rqtk¥ and w” = gr (rqgr)®¥. Since uw’ has a pending request followed by infinitely
many clock ticks, we have ®Paye(uw’) = oco. Similarly, since uw” eventually has all new
requests immediately granted, we get @,yq(uw”) = 0.

Notice that for the average response-time property ®.,; in the example above, we
have @yyg(w) = Pyvg(uw) for every u € ¥* and w € . Such properties are called prefiz
independent. Finally, we show that every prefix-independent property is both live and co-live.

Proposition 5.11. Every prefiz-independent property @ is live and co-live.

Proof. Consider a prefix-independent property @. We only show that @ is live as its co-
liveness can be proved similarly. Suppose towards contradiction that @ is not live, and thus by
Theorem 5.4 that &(w) = SafetyCl(P)(w) for some w € ¥ with &(w) < T. Let w be such a
word, and consider two prefixes u; < ug < w such that sup,,cyw P(usw’) < sup,ese P(ujw’).
Such prefixes exist because otherwise we have a contradiction to @(w) < T. Then, there
exists w” € 3% such that @(ugw”) < @(ujw”). Since uy = ug, there is a finite word ug
with ug = uj - ug. Notice that, since @ is prefix independent, we have ®(w") = ¢(ujw”) =
&(uyugw”), which contradicts @(ugw”) < @(ujw”). ]

5.1. The Quantitative Safety-Liveness Decomposition. A celebrated theorem states
that every boolean property can be expressed as an intersection of a safety property and a
liveness property [AS85]. In this section, we prove an analogous result in the quantitative
setting.

Example 5.12. Let ¥ = {rq, gr, tk, 0o}. Recall the maximal response-time property ®max
from Example 3.11, and the average response-time property ®,, from Example 5.10. Let n >
0 be an integer and define a new property @ : £« — [0, n] by @(w) = Paye(w) if Prax(w) < n,
and &(w) = 0 otherwise. For the safety closure of @, we have SafetyCl(®)(w) = n if
Pmax(w) < n, and SafetyCl(P)(w) = 0 otherwise. Now, we further define ¥ (w) = Pyyg(w) if
Pax(w) < n, and ¥(w) = n otherwise. Observe that ¥ is live, because every prefix of a
trace whose value is less than n can be extended to a greater value. Finally, note that for
all w € ¥¥, we can express ¢(w) as the pointwise minimum of SafetyCl(®)(w) and ¥(w).
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Intuitively, the safety part SafetyCl(®) of this decomposition checks whether the maximal
response time stays below the permitted bound, and the liveness part ¥ keeps track of the
average response time as long as the bound is satisfied.

Following a similar construction, we show that a safety-liveness decomposition exists for
every property.

Theorem 5.13. For every property ®, there exists a liveness property ¥ such that ®(w) =
min(SafetyCl(P)(w), ¥ (w)) for all w € £¥.

Proof. Let @ be a property and consider its safety closure SafetyCl(®). We define ¥
as follows: ¥(w) = ®(w) if SafetyCl(P)(w) # P(w), and ¥(w) = T otherwise. Note
that SafetyCl(®)(w) > @(w) for all w € ¥¥ by Theorem 3.6. When SafetyCl(P)(w) >
&(w), we have min(SafetyCl(P)(w),¥(w)) = min(SafetyCl(P)(w),P(w)) = ¢(w). When
SafetyCl(P)(w) = P(w), we have min(SafetyCl(P)(w), ¥ (w)) = min(P(w), T) = @(w).
Now, suppose towards contradiction that ¥ is not live, i.e., there exists w € * such
that ¥(w) < T and for all v £ ®(w), there exists u < w satisfying sup,esw @(uw’) # v.
Let w € ¥“ be such that ¥(w) < T. Then, by definition of ¥, we know that ¥(w) =
&(w) < SafetyCl(®)(w). Moreover, since SafetyCl(P)(w) £ ¥(w), there exists u < w
satisfying sup,esw @(uw’) 2 SafetyCl(®P)(w). In particular, we have sup,ecse @(uw’) <
SafetyCl(P)(w). Since we have SafetyCl(P)(w) = inf,s <y, SUp,yexe @(w'w') by definition and
u < w, it yields a contradiction. Therefore, ¥ is live. ]

In particular, if the given property is safe or live, the decomposition is trivial.

Remark 5.14. Let @ be a property. If @ is safe, then the safety part of the decomposition
is @ itself, and the liveness part is the constant property that maps every trace to T. If @ is
live, then the liveness part of the decomposition is @ itself, and the safety part is SafetyCl(P).
Note that, in this case, SafetyCl(®) may differ from the constant function T, but taking the
safety part as constant function T is a valid decomposition.

Another decomposition theorem is the one of boolean properties over nonunary alphabets
into two liveness properties [AS85]. We extend this result to the quantitative setting.

Theorem 5.15. For every property @ over a nonunary alphabet 33, there exist two liveness
properties W1 and Wy such that ¢(w) = min(¥ (w), Yo (w)) for all w € X¥.

Proof. Let ¥ be a finite alphabet with |X| > 2 and aj,a2 € ¥ be two distinct letters.
Consider an arbitrary property @ over X. For ¢ € {1,2}, we define ¥; as follows: ¥;(w) =T
if w = u(a;)* for some u € ¥*, and ¥;(w) = ®(w) otherwise. Note that, since a; and a
are distinct, whenever w € ¥*(a1)% then w ¢ ¥*(az)¥, and vice versa. Then, we have that
both ¥, and ¥, are T only when @ is T. In the remaining cases, when at most one of ¥
and ¥, is T, then either both equals @ or one of them is T and the other is . As a direct
consequence, ¢(w) = min(¥; (w), ¥a(w)) for all w € X¢.

Now, we show that ¥; and ¥, are both live. By construction, ¥;(u(a;)*) = T for all
u € ¥*. In particular, SafetyCl(¥;)(w) = infy <y sup,ese ¥i(uw’) = T for all w € 3¥. We
conclude that ¥; is live thanks to Theorem 5.4. ]

For co-safety and co-liveness, the duals of Remark 5.14 and Theorems 5.13 and 5.15 hold. In
particular, every property is the pointwise maximum of its co-safety closure and a co-liveness

property.
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5.2. Threshold Liveness and Top Liveness. Threshold liveness connects a quantitative
property and the boolean liveness of the sets of words whose values exceed a threshold value.

Definition 5.16 (Threshold liveness and co-liveness). A property @ : ¥ — D is threshold
live when for every v € D the boolean property @, is live (and thus @y, is co-live).
Equivalently, @ is threshold live when for every u € ¥* and v € D there exists w € ¥“ such
that @(uw) > v. Similarly, a property @ : 3% — D is threshold co-live when for every v € D
the boolean property @, is co-live (and thus @<, is live). Equivalently, @ is threshold
co-live when for every u € £* and v € D there exists w € £* such that ¢(uw) < v.

We relate threshold liveness with the boolean liveness of a single set of words.
Proposition 5.17. A property @ is threshold live iff the set > is live in the boolean sense.

Proof. Consider a property @ : ¥ — D.

(=): Assume & to be threshold live, i.e., for every v € D the boolean property @, is
live. In particular, &> is also live.

(<): Assume &> to be live in the boolean sense. Observe that for every v < T we
have &>t C &>,. Since the union of a boolean liveness property with any boolean property
is live [AS85], the boolean property >, is also live for all v < T, i.e., @ is threshold live. []

Liveness is characterized by the safety closure being strictly greater than the property
whenever possible (Theorem 5.4). Top liveness puts an additional requirement on liveness:
the safety closure of the property should not only be greater than the original property but
also equal to the top value.

Definition 5.18 (Top liveness and bottom co-liveness). A property @ is top live when
SafetyCl(®)(w) = T for every w € X“. Similarly, a property @ is bottom co-live when
CoSafetyCl(®)(w) = L for every w € £.

We provide a strict hierarchy of threshold liveness, top liveness, and liveness.

Proposition 5.19. FEvery threshold-live property is top live, but not vice versa; and every
top-live property is live, but not vice versa.

Proof. First, we show the strict inclusion of threshold liveness in top liveness. Let @ be a
threshold-live property. In particular, taking the threshold v = T gives us that for every
u € ¥* there exists w € ¥¢ such that @(uw) = T. Then, sup,exo P(uw) = T for all u € X*,
which implies that @ is top live. Next, consider the property @ over the alphabet {a,b},
defined for all w € ¥¢ as follows: @(w) = |w|, if w has finitely many a’s, otherwise &(w) = 0.
Observe that sup,,cxw P(uw) = oo for all u € £*, therefore it is top live. However, for the
threshold v = oo, the set >, is empty, implying that it is not threshold live.

Now, we show that the strict inclusion of top liveness in liveness. Recall that, by Theo-
rem 5.4, a property @ is live iff for every w € ¥¢ if @(w) < T then &(w) < SafetyCl(P)(w).
Then, notice that if a property @ is top live, it is obviously live. Next, let ¥ = {a,b} and
consider the property @ : £ — [0, 2] defined for all w € 3¢ as follows: &(w) = 0 if w is of
the form X*b*, otherwise &(w) = 3.~ 27" f(0;) where w = ogo7 ..., f(a) =0, and f(b) = 1.
Observe that @ is live since ®(w) < SafetyCl(®)(w) for every word w € ¥*. However, it is
not top live since SafetyCl(®)(aw) <1< 2 =T for all w € X¢. ]

Top liveness does not imply threshold liveness, but it does imply a weaker form of it.
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Proposition 5.20. For every top-live property & and value v < T, the set P>, is live in
the boolean sense.

Proof. Let @ be top live property, i.e., infy <, sup,cse @(uw’) = T for all w € X¢. Let
v < T be a value. Suppose towards contradiction that &>, is not live in the boolean
sense, i.e., there exists & € ¥* such that @(uw') # v for all w’ € X¥. Let @ € X¥ be
such that @ < w. Clearly inf, g Sup,/esw @(uw’) # v. Either inf, <, sup,esw @(uw’) is
incomparable with v, or it is less than v. Since T compares with all values, we have that
inf, <y SUp,exe P(uw’) < T, which contradicts the top liveness of &. ]

While the three liveness notions differ in general, they do coincide for sup-closed properties.
Theorem 5.21. A sup-closed property is live iff it is top live iff it is threshold live.

Proof. Notice that for every sup-closed property @, top liveness means that for every u € ¥*
there is w € ¥ such that @(uw) = T. Let @ be a sup-closed liveness property. Suppose
towards contradiction that it is not top live, i.e., there is v € ¥* such that for all w € ¢
we have ®(uw) < T. Let sup,exe P(uw) = k < T, and note that since @ is sup-closed,
there exists an infinite continuation w’ € 3¢ for which @(uw’) =k < T. As @ is live, there
exists a value v such that k # v and for every prefix v/ < uw’ there exists w” € X% with
&(u'w") > v. However, letting ' = u yields a contradiction to our initial supposition.
Now, let @ be a sup-closed top liveness property. Thanks to Proposition 5.17, it is
sufficient to show that the boolean property @~ is live in the boolean sense. Suppose
towards contradiction that @~ is not live, i.e., there exists u € ¥* such that for all w € X¢
we have @(uw) < T. Due to sup-closedness, we have sup,cyw @(uw) < T as well. Moreover,
for every w € ¥¢ such that u < w, this means that inf,, ., sup,cyo @(uw’) < T, which is a
contradiction. ]

5.3. Additional Notions Related to Quantitative Liveness. In [LDL17], the authors
define a property @ as multi-live iff SafetyCl(®)(w) > L for all w € . We show that our
definition is more restrictive, resulting in fewer liveness properties while still allowing a
safety-liveness decomposition.

Proposition 5.22. Every live property is multi-live, but not vice versa.

Proof. We prove that liveness implies multi-liveness. Suppose toward contradiction that some
property @ is live, but not multi-live. Then, there exists w € ¥* for which SafetyCl(®)(w) =
1, and therefore &(w) = L too. Note that we assume D is a nontrivial complete lattice, i.e.,
T # L. Then, since @ is live, we have SafetyCl(P)(w) > @(w) by Theorem 5.4, which yields
a contradiction.

Now, we provide a separating example on a totally ordered domain. Let ¥ = {a,b, c},
and consider the following property: @(w) = 0 if w = ¥, and ¢(w) = 1 if w € ¥*cX¥,
and ¢(w) = 2 otherwise (i.e., if w has some b and no ¢). For all w € ¥ and prefixes
u < w, we have @(uc”) = 1. Thus SafetyCl(P)(w) # L, which implies that ¢ is multi-
live. However, @ is not live. Indeed, for every w € X% such that w € ¥*cX%, we have
&(w) =1 < T. Moreover, w admits some prefix v that contains an occurrence of ¢, thus
satisfying sup,,cye. @(uw’) = 1. []

Recall that a property is both safe and live iff it is the constant function T (Proposition 5.6).
For multi-safety and multi-liveness, this is not the case.
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Example 5.23. Let ¥ = {a, b} be an alphabet and D = {v1, vy, L, T} be a lattice where v;
and v are incomparable. Consider the property @ : ¢ — DD that is defined as ¢(w) = vy if
a < w and ¢(w) = vy if b < w. Recall from Proposition 3.12 that & is safe, thus multi-safe
by Proposition 3.29. Clearly, SafetyCl(®)(w) > L for all w € ¥, thus @ is multi-live.
However, @ is not live as for all words w, we have &(w) = SafetyCl(P)(w) < T.

In [GS22], the authors define a property @ as verdict-live iff for every w € ¥ and value
v £ &(w), every prefix u < w satisfies ®(uw') = v for some w’ € X¢. We show that our
definition is more liberal.

Proposition 5.24. Every verdict-live property is live, but not vice versa.

Proof. The implication holds trivially. We provide a separating example below, concluding
that our definition is strictly more general even for totally ordered domains. Let ¥ = {a, b},
and consider the following property: ®(w) = 0 if w = a*, and @®(w) = 1 if w € T*bX XY,
and ®(w) = 2”1l otherwise (if w has exactly one b), where u < w is the shortest prefix in
which b occurs. Consider an arbitrary w € ¥¢. If @(w) = 1, then the liveness condition is
vacuously satisfied. If &(w) = 0, then w = a“, and every prefix u < w can be extended with
w' = ba® or w” = b* to obtain $(uw’) = 2~ U+ and G(uw”) = 1. If 0 < $(w) < 1, then w
has exactly one b, and every prefix u < w can be extended with b to obtain ®(ub”) = 1.
Hence & is live. However, @ is not verdict-live. To see this, consider the trace w = a*ba®
for some integer k£ > 1 and note that ®(w) = 2~ +1). Although all prefixes of w can be
extended to achieve the value 1, the value domain contains elements between ¢(w) and 1,
namely the values 27 for 1 < m < k. Each of these values can be rejected after reading a
finite prefix of w, because for n > m it is not possible to extend a™ to achieve 27, []

Let us conclude with a remark on the form of hypotheses in our definition of liveness.

Remark 5.25. In the same vein as Remark 3.34, suppose we define liveness with strict lower
bound hypotheses instead of nonstrict: for all w € ¥¢, if @(w) < T, then there exists a value
v € D such that @(w) # v and for all prefixes u < w, we have sup,ycsw @(uw') > v. Let w
be a word with @(w) < T and consider v = ¢(w). Evidently, according to this definition, it
would be permissible for the sup of possible prediction values to converge to ®(w), in other
words, for the safety closure to have the same value as the property on a word whose value
is less than T, which is too lenient.

6. QUANTITATIVE AUTOMATA

A nondeterministic quantitative! automaton (or just automaton from here on) on words is a
tuple A = (X,Q,¢,d), where X is an alphabet; @ is a finite nonempty set of states; ¢ € Q
is an initial state; and §: Q x ¥ — 2(@QXQ) ig a finite transition function over weight-state
pairs. A transition is a tuple (¢,0,z,¢') € Q@ x ¥ x Q x Q, such that (z,¢') € §(¢,0), also
written ¢ == ¢'. (There might be finitely many transitions with different weights over the
same letter between the same states.?) We write v(t) = z for the weight of a transition
t=(q,0,7,q"). Ais deterministic if for all ¢ € @ and o € X, the set §(q, o) is a singleton.

IWe speak of “quantitative” rather than “weighted” automata, following the distinction made in [Bok21]
between the two.

2The flexibility of allowing “parallel” transitions with different weights is often omitted, as it is redundant
for some value functions, including the ones we focus on in the sequel, while important for others.
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We require the automaton A to be total, namely that for every state g € @ and letter o € X,
there is at least one state ¢’ and a transition ¢ — ¢’. For a state ¢ € Q, we denote by A9

the automaton that is derived from A by setting its initial state ¢ to q.
w[0]:zo w(1]:z1

A run of A on a word w is a sequence p = qq q2 . . . of transitions where
qo = ¢ and (2, gi+1) € 6(gi, w(i]). For 0 < i < |w|, we denote the ith transition in p by p[i],
and the finite prefix of p up to and including the ith transition by p[..i]. As each transition
t; carries a weight y(¢;) € Q, the sequence p provides a weight sequence v(p) = v(to)v(t1) . ..
A Val-automaton is one equipped with a value function Val : Q“ — R, which assigns real
values to runs of A. We assume that Val is bounded for every finite set of rationals, i.e., for
every finite V' C Q there exist m, M € R such that m < Val(z) < M for every z € V¥. The
finite set V' corresponds to transition weights of a quantitative automaton, and the concrete
value functions we consider satisfy this assumption.

Notice that while quantitative properties can be defined over arbitrary value domains,
we restrict quantitative automata to totally-ordered numerical value domains (i.e., bounded
subsets of R) as this is the standard setting in the literature.

The value of a run p is Val((p)). The value of a Val-automaton A on a word w, denoted
A(w), is the supremum of Val(p) over all runs p of A on w, generalizing the standard
approach in boolean automata where acceptance is defined through the existence of an
accepting run. The top value of a Val-automaton A is T 4 = sup,cyw A(w), which we denote
by T when A is clear from the context. Note that when we speak of the top value of an
automaton or a property expressed by an automaton, we always match its value domain to
have the same top value.

An automaton A is safe (resp. live) iff it expresses a safety (resp. liveness) property.
Two automata A and A’ are equivalent, if they express the same function from words to
reals. The size of an automaton consists of the maximum among the size of its alphabet,
state-space, and transition-space, where weights are represented in binary.

We list below the value functions for quantitative automata that we will use, defined
over infinite sequences vgvy . .. of rational weights.

e Inf(v) = inf{v, | n > 0} e Sup(v) = sup{v, | n > 0}
e LimInf(v) = li_}rn inf{v; | i > n} e LimSup(v) = li_>m sup{v; | i > n}
1 n—1 1 n—1
LimInfA = LimInf | — i Li A = Li - i
e LimInfAvg(v) imln (n Zz;v> o LimSupAvg(v) imSup (n %v)

For a discount factor A € QN (0,1), DSumy(v) = Z Ny

i>0
Note that (i) when the discount factor A\ € Q N (0, 1) is unspecified, we write DSum, and (ii)
LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff in the literature.

A value function Val is prefix independent iff for all z € Q* and all y € Q¥ we have
Val(y) = Val(xzy). The value functions LimInf, LimSup, LimInfAvg, and LimSupAvg are prefix
independent, while Inf, Sup, and DSum are not.

The following statement allows us to consider Inf- and Sup-automata as only having
runs with respectively nonincreasing and nondecreasing sequences of weights, and to also
consider them as LimInf- and LimSup-automata.
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Proposition 6.1. Let Val € {Inf,Sup}. Given a Val-automaton, we can construct in
PTIME an equivalent Val-, LimInf- or LimSup-automaton whose runs yield monotonic weight
sequences.

Proof. Consider a Sup-automaton A = (X, @Q, ¢, d). The idea is to construct an equivalent Sup-
automaton A’ that memorizes the maximal visited weight, and optionally take it as a LimlInf-
or LimSup-automaton. A similar construction appears in [CDH10, Lem. 1] where for every
run of A there is a run of A’ yielding a weight sequence that is eventually constant, but it is
not necessarily the case that every run of A’ has a monotonic weight sequence. Let V' be the
set of weights on A’s transitions. Since |V| < oo, we can fix the minimal weight vg = min(V').
We construct A’ = (3, Q x V, (1,10), ") where §': (Q x V) x & — 29V is defined as follows.
Given p € Q, v,v' € V, and o € %, we have that (v, (¢, max{v,v'})) € §'((p,v), o) if and
only if (v/,q) € §(p, o). Notice that if A is deterministic, so is A’. Clearly, the Sup-automata
A’ and A are equivalent, and the construction of A’ is in PTIME in the size of A. Observe
that, by construction, every run p of A’ yields a nondecreasing weight sequence for which
there exists ¢« € N such that for all j > ¢ we have v(p[i]) = v(p[j]) = Sup(v(p)). Hence, A’
can be equivalently interpreted as a Sup-, LimInf or LimSup-automaton. The construction
for a given Inf-automaton is dual as it consists in memorizing the minimal visited weight,
therefore the weight sequences are nonincreasing. []

We show that the common classes of quantitative automata always express sup-closed
properties, which will simplify the study of their safety and liveness.

Proposition 6.2. Let Val € {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. Every
Val-automaton expresses a property that is sup-closed. Furthermore its top value is rational,
attainable by a run, and can be computed in PTIME.

Proof. Observe that, by Proposition 6.1 the cases of Val € {Inf,Sup} reduce to Val €
{LimInf, LimSup}. So, we can assume that Val € {LimInf, LimSup, LimInfAvg, LimSupAvg,
DSum}.

It is shown in the proof of [CDH10, Thm. 3] that the top value of every Val-automaton
A is attainable by a lasso run, and is therefore rational, and can be computed in PTIME. Tt
is left to show that A is sup-closed, meaning that for every finite word u € ¥*, there exists
w € X¥, such that A(uw) = sup,, A(uw’).

Let U be the set of states that A can reach running on u. Observe that for every state g €
U, we have that A? is also a Val-automaton. Thus, by the above result, its top value T is at-
tainable by a run on some word w,. Hence, for Val € {LimInf, LimSup, LimInfAvg, LimSupAvg},
we have W = wyg, such that T, = max(Ty | ¢ € U). For Val € {DSum} with a discount
factor A, let P, be the maximal accumulated value of a run of A on u that ends in the state
¢. Then, we have W = wy, such that P, + Alul . Ty = max(Py + Al Ty | d €U). ]

7. SUBROUTINE: CONSTANT-FUNCTION CHECK

We will show that the problems of whether a given automaton is safe or live are closely
related to the problem of whether an automaton expresses a constant function, motivating its
study in this section. We first prove the problem hardness by reduction from the universality
of nondeterministic finite-state automata (NFAs) and reachability automata.
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Lemma 7.1. Let Val € {Sup, Inf, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. Deciding
whether a Val-automaton A expresses a constant function is PSPACE-hard.

Proof. First, we prove the case where Val € {Inf, LimInf, LimSup, LimInfAvg, LimSupAvg,
DSum}. The proof goes by reduction from the universality problem of nondeterministic
finite-state automata (NFAs), which is known to be PSPACE-complete. Consider an NFA
A=(%,Q,t, F,)) over the alphabet ¥ = {a,b}. We construct in PTIME a Val-automaton
A’ = (34,Q’,1,0") over the alphabet ¥4 = {a, b, #}, such that A is universal if and only if
A’ is constant. A’ has two additional states, Q' = Q W{qo, q1}, and its transition function ¢’
is defined as follows:

e For every (q,0,p) € §, we have ¢q o1, p.

e For every ¢ € Q \ F, we have ¢ #9, qo-

e For every q € F', we have ¢ ﬂ> q1-

e For every o € ¥ U {#}, we have ¢ o0, qo, and qq ol qi.

Let T be the top value of A’. (We have T =1 in all cases, except for Val = DSum.) First,
note that for every word w with no occurrence of #, we have that A'(w) = T, as all runs
of A’ visit only transitions with weight 1. If A is not universal, then there exists a word
u € {a,b}* such that A4 has no run over u from ¢ to some accepting state, and thus all runs
of A" over u# from ¢ reach qo. Hence, A'(u#a®) # T, while A'(a¥) = T, therefore A’ is
not constant. Otherwise, namely when A is universal, all infinite words with at least one
occurrence of # can reach ¢ while only visiting 1-weighted transitions, and thus A'(w) =T
for all w € {a,b, #}*.

Next, we prove the case where Val = Sup. The proof goes by reduction from the
universality problem of a complete reachability automaton A’ (i.e., a complete Biichi
automaton all of whose states are rejecting, except for a single accepting sink). The problem
is known to be PSPACE-hard by a small adaptation to the standard reduction from the
problem of whether a given Turing machine T that uses a polynomial working space accepts
a given word u to NFA universality®. By this reduction, if T accepts u then A’ accepts
all infinite words, and if 7' does not accept u then A" accepts some words, while rejecting
others by arriving in all runs to a rejecting sink after a bounded number of transitions. As a
complete reachability automaton A’ can be viewed as special case of a Sup-automaton A,
where transitions to nonaccepting states have weight 0 and to accepting states have weight
1, the hardness result directly follows to whether a Sup-automaton is constant. []

A simple solution to the problem is to check whether the given automaton A is equivalent
to an automaton B expressing the constant top value of A, which is computable in PTIME
by Proposition 6.2. For some automata classes, it suffices for a matching upper bound.

Proposition 7.2. Deciding whether an Inf-; Sup-, LimInf-, or LimSup-automaton expresses
a constant function is PSPACE-complete.

Proof. PSPACE-hardness is shown in Lemma 7.1. For the upper bound, we compute in
PTiME, due to Proposition 6.2, the top value T of the given automaton A, construct in
constant time an automaton B of the same type as A that expresses the constant function
T, and check whether A and B are equivalent. This equivalence check is in PSPACE for
arbitrary automata of the considered types [CDH10, Thm. 4]. ]

3Due to private communication with Christof Loding. See also [KZ17, Thm. A.1].
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Yet, this simple approach does not work for DSum-automata, whose equivalence is an
open problem, and for limit-average automata, whose equivalence is undecidable [DDG™10,
CDE'10, HPPRI18S].

For DSum-automata, our alternative solution removes “nonoptimal” transitions from
the automaton and then reduces the problem to the universality problem of NFAs.

Theorem 7.3. Deciding whether a DSum-automaton expresses a constant function is
PSPACE-complete.

Proof. PSPACE-hardness is shown in Lemma 7.1. Consider a DSum-automaton A. By
Proposition 6.2, for every state ¢ of A we can compute in PTIME the top value T, of A9.
We then construct in PTIME a DSum-automaton A’, by removing from A every transition
q =% ¢, for which  + X - T, < T,. Finally, we consider A’ as an (incomplete) NFA A" all
of whose states are accepting.

We claim that A" is universal, which is checkable in PSPACE, if and only if A expresses
a constant function. Indeed, if A" is universal then for every word w, there is a run of A”
on every prefix of w. Thus, by Konig’s lemma there is also an infinite run on w along the
transitions of A”. Therefore, there is a run of A on w that forever follows optimal transitions,
namely ones that guarantee a continuation with the top value. Hence, by the discounting of
the value function, the value of this run converges to the top value. If A” is not universal,
then there is a finite word u for which all runs of A on it reach a dead-end state. Thus, all
runs of A on u must have a transition ¢ — ¢/, for which z + \ - Ty < Ty, implying that
no run of A on a word w for which u is a prefix can have the top value. ]

The solution for limit-average automata is more involved. It is based on a reduction to
the limitedness problem of distance automata, which is known to be in PSPACE [Has82,
Sim94, Has00, LP04]. We start by presenting Johnson’s algorithm, which we will use for
manipulating the transition weights of the given automaton, and proving some properties of
distance automata, which we will need for the reduction.

A weighted graph is a directed graph G = (V, E) equipped with a weight function
v : E — Z. The cost of a path p = vy, v1,...,v; is v(p) = Zi‘:ol Y (vi, Vig1).

Proposition 7.4 (Johnson’s Algorithm [Joh77, Lem. 2 and Thms. 4 and 5]). Consider
a weighted graph G = (V, E) with weight function v : E — Z, such that G has no negative
cycles according to v. We can compute in PTIME functions h:V — Z and v : E — N such
that for every path p = vo,v1,...,v; in G it holds that +'(p) = v(p) + h(vo) — h(vg).

Remark 7.5. Proposition 7.4 is stated for graphs, while we will apply it for graphs underlying
automata, which are multi-graphs, namely having several transitions between the same pairs
of states. Nevertheless, to see that Johnson’s algorithm holds also in our case, one can
change every automaton to an equivalent one whose underlying graph is a standard graph,
by splitting every state into several states, each having a single incoming transition.

A distance automaton is a weighted automaton over the tropical semiring (a.k.a., min-
plus semiring) with weights in {0,1}. It can be viewed as a quantitative automaton over
finite words with transition weights in {0,1} and the value function of summation, extended
with accepting states. A distance automaton is of limited distance if there exists a bound on
the automaton’s values on all accepted words.

Lifting limitedness to infinite words, we have by Konig’s lemma that a total distance
automaton of limited distance b, in which all states are accepting, is also guaranteed to have
a run whose weight summation is bounded by b on every infinite word.
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Proposition 7.6. Consider a total distance automaton D of limited distance b, in which all
states are accepting. Then, for every infinite word w, there exists an infinite run of D on w
whose summation of weights (considering only the transition weights and ignoring the final
weights of states) is bounded by b.

Proof. Consider an infinite word w, and let T be the tree of D’s runs on prefixes of w whose
values are bounded by b. Notice that T is an infinite tree since, by the totalness of D and
the fact that all states are accepting, for every prefix of w there is at least one such run. As
the branching degree of 1" is bounded by the number of states in D, there exists by Konig’s
lemma an infinite branch p in T'. Observe that the summation of weights along p is bounded
by b—were it not the case, there would have been a position in p up to which the summation
has exceeded b, contradicting the definition of 7. []

Lifting nonlimitedness to infinite words, it may not suffice for our purposes to have an infinite
word on which all runs of the distance automaton are unbounded, as their limit-average
value might still be 0. Yet, thanks to the following lemma, we are able to construct an
infinite word on which the limit-average value is strictly positive.

Lemma 7.7. Consider a total distance automaton D of unlimited distance, in which all
states are accepting. Then, there exists a finite nonempty word u such that D(u) =1 and
the possible runs of D on u lead to a set of states U such that the distance automaton that
is the same as D but with U as the set of its initial states is also of unlimited distance.

Proof. Let @ be the set of states of D. For aset S C @, we denote by D the distance automa-
ton that is the same as D but with S as the set of its initial states. Let B be the set of sets of
states from which D is of limited distance. That is, B = {S C Q | D® is of limited distance}.
If B = (), the statement directly follows.

Otherwise, B # 0. Since for all S € B, the distance automaton D° is bounded, we
can define b as the minimal number, such that for every S € B and finite word u, we have
DS(u) < b. Formally, b = maxgep(min{b € N | Vu € ¥* D(u) < b}). Because D is of
unlimited distance, we can exhibit a finite word mapped by D to an arbitrarily large value.
In particular, there exists a word z such that D(z) > b+ 2, i.e., the summation of the
weights along every run of D on z is at least b+ 2. Additionally, because transitions are
weighted over {0, 1}, there exists at least one prefix 2 < z for which D(z) = 1. Let the finite
word y be such that z = xy. Next, we prove that x fulfills the statement, namely that the
distance automaton DX, where X is the set of states that D can reach with runs on z, is
also of unlimited distance. Assume towards contradiction that X € B. By construction of
B, we have that DX is of limited distance. In fact, DX (u) < b for all finite words u, by
the definition of b. Hence DX (y) < b, implying that D(z) = D(zy) < b+ 1, leading to a
contradiction, as D(z) > b+ 2. []

Using Propositions 7.4 and 7.6 and Lemma 7.7 we are in position to solve our problem by
reduction to the limitedness problem of distance automata.

Theorem 7.8. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a constant
function, for a given constant or any constant, is PSPACE-complete.

Proof. PSPACE-hardness is shown in Lemma 7.1. Consider a LimInfAvg- or LimSupAvg-
automaton A. We provide the upper bound as follows. First we construct in polynomial
time a distance automaton D, and then we reduce our statement to the limitedness problem
of D, which is decidable in PSPACE [Sim94].
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By Proposition 6.2, one can first compute in polynomial time the top value of A denoted
by T. Thus, A expresses an arbitrary constant if and only if it expresses the constant
function T. From A, we construct the automaton A’, by subtracting T from all transitions
weights (by Proposition 6.2, T is guaranteed to be rational). By construction the top value
of A is 0, i.e., A'(w) <0 for all w, and the question to answer is whether A’ expresses the
constant function 0, namely whether or not exists some word w such that A'(w) < 0.

Next, we construct from A’, in which the nondeterminism is resolved by sup as usual,
the opposite automaton A", in which the nondeterminism is resolved by inf, by changing
every transition weight z to —z. If A’ is a LimInfAvg-automaton then A” is a LimSupAvg-
automaton, and vice versa. Observe that for every word w, we have A'(w) = —A”(w). Now,
we shall thus check if there exists a word w, such that A”(w) > 0.

Since for every word w, we have that A”(w) > 0, there cannot be a reachable cycle in A"
whose average value is negative. Otherwise, some run would have achieved a negative value,
and as the nondeterminism of A” is resolved with inf, some word would have been mapped
by A’ to a negative value. Yet, there might be in A” transitions with negative weights.
Thanks to Johnson’s algorithm [Joh77] (see Proposition 7.4 and the remark after it), we can
construct from A” in polynomial time an automaton A" that resolves the nondeterminism
as A” and is equivalent to it, but has no negative transition weights. It is worth emphasizing
that since the value of the automaton on a word is defined by the limit of the average values
of forever growing prefixes, the bounded initial and final values that result from Johnson’s
algorithm have no influence.

Finally, we construct from A" the automaton B (of the same type), by changing every
strictly positive transition weight to 1. So, B has transitions weighted over {0,1}. Observe
that while A" and B need not be equivalent, for every word w, we have A" (w) > 0 if and
only if B(w) > 0. This is because z - B(w) < A”(w) < y - B(w), where z and y are the
minimal and maximal strictly positive transition weights of A", respectively. Further, we
claim that B expresses the constant function 0 if and only if the distance automaton D,
which is a copy of B where all states are accepting, is limited.

If D is limited, then by Proposition 7.6 there is a bound b, such that for every infinite
word w, there exists an infinite run of D (and of B) over w whose summation of weights is
bounded by b. Thus, the value of B (i.e., LimInfAvg or LimSupAvg) for this run is 0.

If D is not limited, observe that the existence of an infinite word on which all runs of D
are of unbounded value does not suffice to conclude. Indeed, the run that has weight 1 only
in positions {2" | n € N} has a limit-average of 0. Nevertheless, we are able to provide a
word w, such that the LimInfAvg and LimSupAvg values of every run of B over w are strictly
positive.

By Lemma 7.7, there exists a finite nonempty word wuj, such that D(u;) = 1 and the
possible runs of D over u lead to a set of states S, such that the distance automaton D!
(defined as D but where S is the set of initial states) is of unlimited distance. We can then
apply Lemma 7.7 on D%, getting a finite nonempty word us, such that D% (ug) = 1, and
the runs of D' over uy lead to a set S, such that D% is of unlimited distance, and so
on. Since there are finitely many subsets of states of D, we reach a set Sy, such that there
exists j < £ with S; = Sy. We define the infinite word w = uy - ug - - - uj - (Ujp1 - ujpo - - up)®.
Let m be the maximum length of u;, for i € [1,¢]. Next, we show that the LimInfAvg and
LimSupAvg values of every run of D (and thus the value of B) over w is at least %

Indeed, consider any infinite run p of D over w. At position |u;|, the summation of
weights of p is at least 1, so the average is at least % Since the run p at this position is in
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some state ¢ € S; and D' (uz) = 1, the continuation until position |ujuz| will go through
at least another 1-valued weight, having the average at position |ujus| is at least % Then,
for every position k and natural number ¢ € N such that |ug---u;| <k < |uy---uiq1], we
have =1 < % < ﬁ = % Therefore, as ¢ goes to infinity, the running average of weights of

m D

1
p converges to -.

8. SAFETY OF QUANTITATIVE AUTOMATA

For studying the safety of automata, we build on the alternative characterizations of
quantitative safety through threshold safety and continuity, as discussed in Sections 3.1
and 3.2. The characterizations for totally-ordered value domains hold in particular for
properties expressed by quantitative automata. First, we extend the notion of safety
from properties to value functions, allowing us to characterize families of safe quantitative
automata. Finally, we provide algorithms to construct the safety closure of a given automaton
A and to decide whether A is safe.

8.1. Safety of Value Functions. In this section, we focus on the value functions of
quantitative automata, which operate on the value domain of real numbers. In particular, we
carry the definitions of safety, co-safety, and discounting to value functions. This allows us to
characterize safe (resp. co-safe, discounting) value functions as those for which all automata
with this value function are safe (resp. co-safe, discounting). Moreover, we characterize
discounting value functions as those that are safe and co-safe.

Recall that we consider the value functions of quantitative automata to be bounded
from below and above for every finite input domain V' C Q. As the set V* can be taken as
a Cantor space, just like 3“, we can carry the notions of safety, co-safety, and discounting
from properties to value functions.

Definition 8.1 (Safety and co-safety of value functions). A value function Val : Q¥ — R
is safe when for every finite subset V' C Q, infinite sequence x € V¥, and value v € R, if
Val(z) < v then there exists a finite prefix 2 < x such that sup,cyw Val(zy) < v. Similarly, a
value function Val : Q¥ — R is co-safe when for every finite subset V' C Q, infinite sequence
x € V¥ and value v € R, if Val(xz) > v then there exists a finite prefix z < x such that
inf,cyw Val(zy) > v.

Definition 8.2 (Discounting value function). A value function Val : Q¥ — R is discounting
when for every finite subset V C Q and every ¢ > 0 there exists n € N such that for every
x € V" and y,y € V¥ we have |Val(zy) — Val(zy')| < e.

We remark that by Theorems 4.5 and 4.8, the value function Inf is safe and Sup is
co-safe; moreover, DSum is discounting by definition. Now, we characterize the safety (resp.
co-safety) of a given value function by the safety (resp. co-safety) of the automata family it
defines. We emphasize that the proofs of the two statements are not dual. In particular,
exhibiting a finite set of weights that falsifies the safety of a value function from a nonsafe
automaton requires a compactness argument.

Theorem 8.3. Consider a value function Val. All Val-automata are safe (resp. co-safe) iff
Val is safe (resp. co-safe).
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Proof. We show the case of safety and co-safety separately as they are not symmetric due
to nondeterminism of automata.

Co-safety. One direction is immediate, by constructing a deterministic automaton that
expresses the value function itself: If Val is not co-safe then there exists some finite set
V C Q of weights with respect to which it is not co-safe. Consider the deterministic
Val-automaton over the alphabet V with a single state and a self loop with weight v € V
over every letter v € V, that is, the letters coincide with the weights. Then, the automaton
simply expresses Val and is therefore not co-safe.

For the other direction, consider a co-safe value function Val, a Val-automaton A over an
alphabet 3 with a set of weights V' C Q, a value v € R, and a word w, such that A(w) > v.
We need to show that there exists a prefix u < w such that inf,cyw A(uw’) > v. Let p be
some run of A on w such that Val(y(p)) > v. (Observe that such a run exists, since the
value domain is totally ordered, as the supremum of runs that are not strictly bigger than v
is also not bigger than v.)

Then, by the co-safety of Val, there exists a prefix p’ of p, such that inf,/cyw Val(y(p')z’) >
v. Let u < w be the prefix of w of length |p’|. By the completeness of A, for every word
w” € ¥¥ there exists a run p'p” over uw”, and by the above we have Val(y(p'p")) > v.
Since A(uw”) > Val(y(p'p")), it follows that inf,ecxw A(uw’) > infrcyw Val(y(p)z') > v,
as required.

Safety. One direction is immediate: if the value function is not safe, we get a nonsafe
automaton by constructing a deterministic automaton that expresses the value function
itself, as detailed in the case of co-safety.

As for the other direction, consider a nonsafe Val-automaton A over an alphabet ¥ with
a finite set V' C Q of weights. Then, there exist a value v € R and a word w with A(w) < v,
such that for every prefix u < w, we have sup,cyw A(uw’) > v. Let v/ € (A(w),v) be a
value strictly between A(w) and v. For every prefix u < w of length ¢ > 0, let w; € ¥* be
an infinite word and 7; a run of A on ww;, such that the value of r; is at least v’. Such a run
exists since for all v < w, the supremum of runs on uw’, where w’ € X, is larger than v’.

Let 7’ be a run of A on w, constructed in the spirit of Konig’s lemma by inductively
adding transitions that appear in infinitely many runs r;. That is, the first transition ¢y on
wl0] in 7" is chosen such that ¢ is the first transition of r; for infinitely many ¢« € N. Then ¢,
on wll], is chosen such that ¢ - ¢ is the prefix of r; for infinitely many ¢ € N, and so on. Let
p be the sequence of weights induced by 7/. Observe that Val(p) < A(w) < v'. Now, every
prefix 7 < p of length ¢ is also a prefix of the sequence p; of weights induced by the run
r;, and by the above construction, we have Val(p;) > v’. Thus, while Val(p) < ¢/, for every
prefix 7 < p, we have sup ¢y Val(np') > o', implying that Val is not safe. ]

Recall that a value function together with a finite set V' C QQ of weights can be seen as a
quantitative property over the finite alphabet ¥ = V. Then, thanks to Corollary 3.27, we
can characterize discounting value functions as those that are both safe and co-safe.

Corollary 8.4. A wvalue function is discounting iff it is safe and co-safe.
As a consequence of Theorem 8.3 and Corollary 8.4, we obtain the following.

Corollary 8.5. All Val-automata are discounting iff Val is discounting.
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8.2. Deciding Safety of Quantitative Automata. We now switch our focus from generic
value functions to families of quantitative automata defined by the common value functions
Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum. As remarked in Section 8.1, the
value functions Inf and DSum are safe, thus all Inf-automata and DSum-automata express
a safety property by Theorem 8.3. Below, we focus on the remaining value functions of
interest.

Given a Val-automaton A where Val is one of the nonsafe value functions above, we
describe (i) a construction of an automaton that expresses the safety closure of A, and (ii)
an algorithm to decide whether A is safe. For these value functions, we can construct the
safety closure as an Inf-automaton.

Theorem 8.6. Let Val € {Sup,LimlInf,LimSup, LimInfAvg, LimSupAvg}. Given a Val-
automaton A, we can construct in PTIME an Inf-automaton A’ that expresses its safety
closure. Moreover, if A is deterministic, then so is A’.

Proof. Let A= (X,Q,t,0) be a Val-automaton as above, where Val # Sup. We construct
an Inf-automaton A" = (X, Q, ,d’) that expresses the safety closure of A by only changing
the weights of A’s transitions, as follows. For every state ¢ € @), we compute in PTIME,
due to Proposition 6.2, the top value T, of the automaton A9. For every state p € Q and
letter o € ¥, we define the transition function ¢'(p,0) = {(T4,¢) | Fz € Q: (z,q) € §(p,0)}.
Notice that A and A’ are identical except for their transition weights, therefore A’ is
deterministic if A is.

Consider a run p of A’. Let i € N be the number of transitions before p reaches its
ultimate strongly connected component, i.e., the one p stays indefinitely. By construction
of A’, the sequence y(p) of weights is nonincreasing, and for all j > i we have that
v(pli]) = v(plj]). Again, by construction, the value v(p[j]) is the maximal value A can
achieve after the first j steps of p. Moreover, since y(p) is nonincreasing, it is the minimal
value among the prefixes of y(p). In other words, y(p[i]) = infjensup,cg, Val(v(p[-.5]p"))
where Rj; is the set of runs of A starting from the state reached after the finite run pl..j].
Notice that this defines exactly the value of the safety closure for the run p. Therefore, it is
easy to see that A'(w) = infy, <y Sup,ese A(uw’) for all w € X¢.

For Val = Sup, we use Proposition 6.1 to first translate A to a LimInf- or LimSup-
automaton, which preserves determinism as needed. L]

For the prefix-independent value functions we study, the safety-closure automaton from
the proof of Theorem 8.6 can be taken as a deterministic automaton with the same value
function.

Theorem 8.7. Let Val € {LimlInf, LimSup, LimInfAvg, LimSupAvg}. Given a Val-automaton
A, we can construct in PTIME a Val-automaton that expresses its safety closure and can be
determinized in EXPTIME.

Proof. Let A be a Val-automaton. We construct its safety closure A’ as an Inf-automaton
in polynomial time, as in the proof of Theorem 8.6. Observe that, by construction, every
run p of A’ yields a nonincreasing weight sequence for which there exists ¢+ € N such that
for all j > i we have (p[i]) = v(p[j]) = Inf(7(p)). Then, to construct a Val-automaton that
is equivalent to A’, we simply copy A’ and use the value function Val instead. Similarly,
to obtain a deterministic Val-automaton that is equivalent to A’, we first determinize the
Inf-automaton A’ in exponential time [KL07, Thm. 7], and then the result can be equivalently
considered as a Val-automaton for the same reason as before. []
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Figure 2: A Sup-automaton A together with its safety closure B given as an Inf-automaton,
which cannot be expressed by a Sup-automaton.

By contrast, this is not possible in general for Sup-automata, as Figure 2 witnesses.

Proposition 8.8. Some Sup-automaton admits no Sup-automata that expresses its safety
closure.

Proof. Consider the Sup-automaton A given in Figure 2. We have SafetyCl(A)(w) = 2
if w = a¥ or the first ¢ in w occurs before the first b in w (which may never occur),
and SafetyCl(A)(w) = 1 otherwise. Suppose towards contradiction that there is a Sup-
automaton A’ expressing SafetyCl(A). Since A’ has finitely many weights, it is sup-closed,
and A'(a¥) = 2, there is a run p of A’ over a“ in which the weight 2 occurs at least once,

say at position ¢. Then, every valid continuation of the finite run p|..i] over A" is mapped to
at least 2. In particular, A’(a'd¥) > 2; however, SafetyCl(A)(a'b”) = 1. ]

We first prove the hardness of deciding safety by reduction from constant-function checks.

Lemma 8.9. Let Val € {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}. It is PSPACE-hard
to decide whether a Val-automaton is safe.

Proof. We can reduce in PTIME the problem of whether a Val-automaton A with the top
value T expresses a constant function, which is PSPACE-hard by Lemma 7.1, to the problem
of whether a Val-automaton A’ is safe, by adding T-weighted transitions over a fresh alphabet
letter from all states of A to a new state ¢, which has a T-weighted self-loop over all
alphabet letters.

Indeed, if A expresses the constant function T, so does A’ and it is therefore safe.
Otherwise, A’ is not safe, as a word w over A’s alphabet for which A(w) # T also has a
value smaller than T by A’, while every prefix of it can be concatenated with a word that
starts with the fresh letter, having the value T. ]

For automata classes with PSPACE equivalence check, a matching upper bound is straight-
forward by comparing the given automaton and its safety-closure automaton.

Theorem 8.10. Deciding whether a Sup-, LimInf-, or LimSup-automaton expresses a safety
property is PSPACE-complete.

Proof. PSPACE-hardness is shown in Lemma 8.9. For the upper bound, we construct in
PTIME, due to Theorem 8.7, the safety-closure automaton A’ of the given automaton A,
and then check in PSPACE if A = A’. Notice that equivalence-check is in PSPACE for these
value functions in general [CDH10, Thm. 4]. O]

On the other hand, even though equivalence of limit-average automata is undecidable
[DDG*10, CDE'10, HPPR18]|., we are able to provide a decision procedure using as a
subroutine our algorithm to check whether a given limit-average automaton expresses a
constant function (see Theorem 7.8). The key idea is to construct a limit-average automaton
that expresses the constant function 0O iff the original automaton is safe. Our approach
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involves the determinization of the safety-closure automaton, resulting in an EXPSPACE
complexity. Let us start with a lemma on checking the equivalence of limit-average automata.

Lemma 8.11. Let Val € {LimInfAvg, LimSupAvg} and consider two Val-automata A and
B. If B is deterministic and each of its runs yields an eventually-constant weight sequence,
deciding whether A and B are equivalent is in PSPACE.

Proof. We construct C by taking the product between A and B where the weight of a
transition in C is obtained by subtracting the weight of the corresponding transition in B
from that in A. We claim that A and B are equivalent iff C expresses the constant function 0.
Indeed, consider a word w € ¥¥. By definition, A(w) = B(w) iff sup, ,cpa{Val(v(pa))} —
Val(y(ps)) = 0 where pp is the unique run of B on w. Equivalently sup, ,cpa{Val(y(pa)) —
Val(v(pg))} = 0. We claim that Val(y(pa)) — Val(y(ps)) = Val(v(pa) — v(ps)) where
v(pa) — v(pg) is the sequence obtained by taking the elementwise difference of the weight
sequences produced by the runs p4 and pg. This claim does not hold for arbitrary sequences
of weights, but it does hold if the sequence of weights vy(pp) is eventually constant and Val
is prefix independent. As the weight sequence of pg is eventually constant by our initial
assumption and Val is prefix independent, we can subtract elementwise from the weight
sequence of each run of A that of B. Thus, we get sup, ,cra{Val(v(p4)) —Val(v(pp))} = 0 iff
sup,era{Val(v(pa) —7(ps))} = 0. Observe that, by construction, each run of C produces a
weight sequence that corresponds to this difference. Then, sup,, ,cpa{Val(v(p4)—7(p5))} =0
iff sup,.cre {Val(v(pc))} = 0 iff C(w) = 0. Finally, to check the equivalence of A and B, we
can decide by Theorem 7.8 and Proposition 6.2 if C(w) = 0 for all w € 3¢. []

Using the lemma above, we obtain an algorithm to check whether a given limit-average
automaton is safe.

Theorem 8.12. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a safety
property is in EXPSPACE.

Proof. Let Val € {LimInfAvg, LimSupAvg} and let A be a Val-automaton. We construct
the safety-closure automaton of A whose weight sequences are eventually constant as in
Theorem 8.6 and transform it into a deterministic Val-automaton B as in the proof of
Theorem 8.7. To check the safety of A, we can decide by Lemma 8.11 whether A and B
are equivalent in PSPACE since B is deterministic and its weight sequences are eventually
constant by construction. Because the construction of B might cause up to an exponential
size blow-up, the decision procedure for checking the safety of limit-average automata is in
EXPSPACE. []

9. LIVENESS OF QUANTITATIVE AUTOMATA

In this section, we provide algorithms to check liveness of quantitative automata, and
to decompose them into a safety automaton and a liveness automaton. We build on
the alternative characterizations of quantitative liveness, as discussed in Section 5.2. In
particular, our algorithms take advantage of the fact that liveness and top liveness coincide
for sup-closed properties (Theorem 5.21).



2:44 U. BOKER, T. A. HENZINGER, N. MAzzoccHI, AND N. E. SARAGQ Vol. 21:2

9.1. Deciding Liveness of Quantitative Automata. Let us start with the problem of
checking whether a quantitative automaton is live. We first provide a hardness result by
reduction from constant-function checks.

Lemma 9.1. Let Val € {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. Deciding
whether a Val-automaton A is live is PSPACE-hard.

Proof. Let Val € {Inf, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum} be a value function.
Consider a Val-automaton A’ that is constructed along the proofs of Lemma 7.1, in which we
show that the constant-function check is PSPACE-hard. Observe that A’ either (i) expresses
the constant function T, and is therefore live; or (ii) has a value T on some word w and a
value z < T on some word w’, where there is a prefix u of w’, such that for every infinite
word w, we have A'(uw) = z, implying that A’ is not live. Therefore, the PSPACE-hardness
of the constant-function check extends to liveness-check.

The proof for Val = Sup goes by reduction from the constant-function check for Inf-
automata, which is PSPACE-hard by Lemma 7.1. Given an Inf-automaton A over an alphabet
¥ = {a, b}, we construct in PTIME a Sup-automaton A’ such that A is constant iff A’ is live.

First, using Proposition 6.1, we transform A into an equivalent Inf-automaton B =
(X, Qp,t,08) whose runs are nonincreasing. Let Sg = {S7,..., Sk} be the set of strongly
connected components of B. Note that, by construction, each S € Sg (for which there is a
transition whose target is in S) is associated with a weight = such that all transitions whose
target is in S has weight z, which we denote by v5(S) = x with a slight abuse of notation.
Notice that y5(S) is undefined when S has no incoming transitions, which may happen if S
is a trivial strongly connected component containing the initial or an unreachable state.

We now construct from B an Inf-automaton C. The automaton C is a copy of B over the
alphabet ¥ = 3 U {#} with two additional states Q¢ = @5 W {qo, ¢1}, modified transition
weights, and some additional transitions. The transition function d¢ is defined as follows:

e For every transition (q, o, x,p) € dg with = > Tpg, we have (¢,0,1,p) € dc.

e For every transition (g, o, x,p) € dg with = < Tg, we have (¢,0,0,p) € dc.

e For every o € ¥ U {#}, we have (q1,0,1,q1) € d¢c and (go,0,0,qo) € dc.

e For every strongly connected component S € Sg with v5(S) > Tp and for every ¢ € S,
we have (¢, #,1,q1) € dc.

e For every strongly connected component S € Sg with v3(S) < Tp and for every ¢ € S,
we have (qa #a 0, QO) € dc.

Notice that (i) we do not add transitions to gy or ¢; from strongly connected components for

which the 5 value is undefined, and (ii) by construction, the strongly connected components

of C are given by the set S¢ = {51, ..., Sk, T, T1} where, for j € {0,1}, we have T; = {q¢;}.

Moreover, for every S € S¢, we have y¢(S) =11if S =T, or S € Sg with y5(T") > Tp, and

v¢(S) = 0 otherwise.

We claim that A is constant iff C is constant. Since A and B are equivalent, we show
that B is constant iff C is constant.

Assume B is constant, i.e., B(w) = Tp for all w € X*. Let w be a word with no
occurrence of #. There is a run of B over w such that every strongly connected component
S € Sp it visits satisfies v3(S) > Tp. By construction, C has a run over w following the
same sequence of states, and thus the same strongly connected components, which satisfy
v8(S) = 1. Therefore, C(w) = 1. Now, let w be a word with an occurrence of #, i.e.,
w = u#w' for some u € ¥* and w’ € ¥%. Since B is constant and an Inf-automaton, there is
a finite run of B over u that always stays in strongly connected components that are weighted
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at least Tg. Then, C has a finite run over w staying only in 1-weighted components, reaching
the 1-weighted bottom component T} after reading u#, and thus C(w) = 1. Therefore, C is
also constant.

Assume B is not constant. Then, there exists wy,ws € X% such that B(w;) < B(ws) =
Tp. By similar arguments as above, we have that C(wz) = 1. Moreover, all runs of B over
wy ultimately stay in a strongly connected component for which the vz value is strictly less
than Tpg. Again, similarly as above, each of these runs correspond to a run of C over wi,
and each corresponding run ultimately stays in a strongly connected component for which
the ¢ value is 0, and thus C(w;) = 0. Therefore, C is also not constant.

Now, we construct from the Inf-automaton C a Sup-automaton A’. The automaton A’
is a copy of C with the only difference being the transition weights: for every (q, o, z,p) € d¢,
we have (q,0,2',p) € 4 where 2’ is the minimum over the values ~¢(S) such that the
strongly connected component S is reachable from the state p. In other words, the weight of
a transition in A’ is 0 if some run starting from the target state can achieve the value 0 in C,
and it is 1 otherwise.

We claim that C expresses SafetyCl(A"), which means C is constant iff A’ is live, thanks
to Proposition 6.2 and Theorem 5.21. First, observe that (i) S¢ = Sy, (ii) for every
S, 5" € S, if S’ is reachable from S and ¢ (S) = 0, then v¢(S”) = v/ (S") = 0, and (iii) for
every S, 5" € Se, if S’ is reachable from S and ¢ (S’) = 1, then v¢(S) = 1.

Consider a word w € ¥, such that C(w) = 0. We want to show that SafetyCI(A")(w) = 0,
i.e., there is a prefix u < w such that A’(uw’) = 0 for all w’ € ¥ Since C(w) = 0, every
run of C over w ultimately stays in a strongly connected component S such that 4¢(S) = 0.
As A’ only differs from C in transition weights, every run of A over w follows the same states
and the strongly connected components. Notice that whenever such a run visits a strongly
connected component 7" with v¢(7) = 1, we have y4(T") = 0 by construction (as the same
run ultimately reaches a component S with v¢(S) = 0). Moreover, due to observation (ii)
above, every run of A’ over w ultimately stays in a strongly connected component S such
that .4/ (S) = 0. Then, by construction, there is a prefix u < w such that A’ (uw’) = 0 for
all w' € B9

Consider a word w € ¥ such that C(w) = 1. We want to show that SafetyCI(A")(w) = 1,
i.e., for every prefix u < w we have A'(uw’) = 1 for some w’ € 3% Since C(w) = 1, some
run of C over w ultimately stays in a strongly connected component S such that 4¢(S) = 1.
By construction of C, the bottom strongly connected component 77 is reachable from any
such component S. Recall that A’ only differs from C in transition weights. Then, every
run p of A’ over w follows the same states and the strongly connected components as C,
and thus the component T} is reachable from any component visited during p by reading #.
Moreover, since T} is a bottom strongly connected component with yo(77) = 1, we have
v (Th) = 1. Then, for every prefix u < w we have A'(uw') =1 for w' = #*. ]

Recall that, thanks to Theorem 5.21 and Proposition 6.2, an automaton 4 expresses a
liveness property iff SafetyCl(A) expresses the constant function T. For automata classes
whose safety closure can be expressed as Inf-automata, we provide a matching upper bound
by simply checking the universality of the safety closure with respect to its top value.
For DSum-automata, whose universality problem is open, our solution is based on our
constant-function-check algorithm (see Theorem 7.3).

Theorem 9.2. Deciding whether an Inf-, Sup-, LimInf-, LimSup-, LimInfAvg-, LimSupAvg-
or DSum-automaton expresses a liveness property is PSPACE-complete.
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Proof. PSPACE-hardness is shown in Lemma 9.1. Let A be a Val-automaton and let T be
its top value. Recall that liveness and top liveness coincide for sup-closed properties by
Theorem 5.21. As the considered value functions define sup-closed properties, as proved in
Proposition 6.2, we reduce the statement to checking whether SafetyCl(.A) expresses the
constant function T.

For Val € {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}, we first construct in PTIME an
Inf-automaton B expressing the safety closure of A thanks to Theorem 8.6. Then, we decide
in PSPACE whether B is equivalent to the constant function T, thanks to Propositions 7.2
and 6.2 For Val = DSum, the safety closure of A is A itself, as DSum is a discounting value
function due to Corollary 8.4 and Theorem 8.3. Hence, we can decide in PSPACE whether A
expresses the constant function T, thanks to Theorem 7.3 and Proposition 6.2. []

9.2. Safety-Liveness Decompositions of Quantitative Automata. We turn to safety-
liveness decomposition, and start with the simple case of Inf- and DSum-automata, which
are guaranteed to be safe. Their decomposition thus consists of only generating a liveness
component, which can simply express a constant function that is at least as high as the
maximal possible value of the original automaton 4. Assuming that the maximal transition
weight of A is fixed, it can be done in constant time.

Considering Sup-automata, recall that their safety closure might not be expressible
by Sup-automata (Proposition 8.8). Therefore, our decomposition of deterministic Sup-
automata takes the safety component as an Inf-automaton. The key idea is to copy the state
space of the original automaton and manipulate the transition weights depending on how
they compare with the safety-closure automaton.

Theorem 9.3. Given a deterministic Sup-automaton A, we can construct in PTIME a
deterministic safety Inf-automaton B and a deterministic liveness Sup-automaton C, such
that A(w) = min(B(w),C(w)) for every infinite word w € ¥¥.

Proof. Given a deterministic Sup-automaton, we can compute in PTIME, due to Propo-
sition 6.1, an equivalent deterministic Sup-automaton A for which every run yields a
nondecreasing weight sequence. We first provide the construction of the automata B and C,
then show that they decompose A, and finally prove that B is safe and C is live.

By Theorem 8.6, we can construct in PTIME an Inf-automaton B expressing the safety
closure of A, where every run of B yields a nonincreasing weight sequence. Observe that
B is safe by construction, and that the structures of A and B only differ on the weights
appearing on transitions, where each transition weight in B is the maximal value that A can
achieve after taking this transition. In particular, B is deterministic because A is so.

Then, we construct the deterministic Sup-automaton C by modifying the weights of A
as follows. For every transition, if the weight of the corresponding transitions in .4 and B
are the same, then the weight in C is defined as the top value of A, denoted by T here after.
Otherwise, the weight in C is defined as the weight of the corresponding transition in A.

Next, we prove that A(w) = min(B(w),C(w)) for every word w. Let pa, ps, pc be the
respective runs of A, B, and C on w. There are the following two cases.

e If the sequences of weights v(p4) and v(pp) never agree, i.e., for every i € N we have
v(pali]) < v(pgli]), then v(pc[i]) = v(pali]) for all i € N by the construction of C. We
thus get A(w) = C(w) < B(w), so A(w) = min(B(w) < C(w)), as required.
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e Otherwise, the sequences of weights v(p4) and v(pg) agree on at least one position, i.e.,
there exists i € N such that v(pa[i]) = v(pgli]). Since the run of A is guaranteed to yield
nondecreasing weights and B is its safety closure, whose runs are nonincreasing, we have
Y(paljl) = v(pglj]) for all 7 > i. Additionally, v(pc[i]) = T by the construction of C. We
thus get A(w) = B(w) < C(w), so A(w) = min(B(w) < C(w)), as required.

Finally, we show that C is live. By Theorem 5.21, it is sufficient to show that for every

reachable state ¢ of C, there exists a run starting from ¢ that visits a transition weighted

by T. Suppose towards contradiction that for some state ¢, there is no such run. Recall

that the state spaces and transitions of A, BB, and C are the same. Moreover, observe that a

transition weight in C is T if and only if the corresponding transitions in .4 and B have the

same weight.

If no transition with weight T is reachable from the state ¢, then by the construction
of C, for every run p4 of A starting from ¢ and the corresponding run pg of B, we have
v(pali]) < v(psli]) for all i € N. Recall that each transition weight in B is the maximal
value A can achieve after taking this transition, and that for every finite word u over which
A reaches ¢, we have sup,, A(uw’) = B(uw').

Hence, by the sup-closedness of A and the fact that the sequences of weights in its
runs are nondecreasing, for each prefix r4 of p4 and the corresponding prefix rg of pg,
there is an infinite continuation p’y for 74 such that the corresponding infinite continuation
p for rg gives Sup(y(rap/y)) = Inf(7(rspp)). Note that this holds only if the two weight
sequences have the same value after some finite prefix, in which case the weight of C is
defined as T. Hence, some run of C from ¢ reaches a transition weighted T, which yields a
contradiction. []

Using the same idea, but with a more involved reasoning, we show a safety-liveness decom-
position for deterministic LimInf- and LimSup-automata.

Theorem 9.4. Let Val € {LimInf,LimSup}. Given a deterministic Val-automaton A, we
can construct in PTIME a deterministic safety Val-automaton B and a deterministic liveness
Val-automaton C, such that A(w) = min(B(w),C(w)) for every infinite word w € X.

Proof. Consider a deterministic Val-automaton A. We construct B and C analogously to their
construction in the proof of Theorem 9.3, with the only difference that we use Theorem 8.7 to
construct B as a Val-automaton rather than an Inf-automaton. Once again, the structures of
A and B only differ on the weights appearing on transitions, and B is deterministic because
A is so.

We first show that B and C decompose A, and then prove that C is live. (Note that B is
safe by construction.)

Given an infinite word w, let p4, pg, pc be the respective runs of A, B, and C on w.
There are the following three cases.

e If the sequences of weights v(p4) and (pg) agree only on finitely many positions, i.e.,
there exists 7 € N such that v(palj]) < v(pg[j]) for all j > i, then by the construction of
C, we have v(pc[j]) = v(palj]) for all 7 > i. Thus, A(w) =C(w) < B(w).

e If the sequences of weights v(p4) and y(pg) disagree only on finitely many positions, i.e.,
there exists i € N such that v(p.4[j]) = v(pglj]) for all j > i, then by the construction of
C, we have v(p¢c[j]) = T for all j > i. Thus, A(w) = B(w) < C(w).

e Otherwise the sequences of weights v(p4) and v(pp) both agree and disagree on infinitely
many positions, i.e., for every ¢ € N there exist j, k > i such that v(pal[j]) < v(pglj]) and
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v(palk]) = v(pplk]). For Val = LimInf, we exhibit an infinite sequence of positions {z; };en
such that y(palx:]) = v(pclzi]) < v(pslzi]) for all i € N. The first consequence is that
A(w) < B(w). The second consequence is that, by the construction of C, if A(w) < T
then C(w) < T, which implies that A(w) = C(w). For Val = LimSup, recall that every
run of B yields a nonincreasing weight sequence. In particular, there exists k € N such
that v(pslk]) = v(ps(¢)) = B(w) for all £ > k. Then, we exhibit an infinite sequence of
positions {y;}ien such that v(paly:]) = B(v(pslyi])) = B(w) and v(pclys]) = T for all
i € N. Consequently, C(w) = T and A(w) = B(w).
In either case, A(w) = min(B(w),C(w)).
Next, we show that C is live using the same argument as in the proof of Theorem 9.3:
On the one hand, every word w for which A(w) = B(w) trivially satisfies the liveness
condition as it implies C(w) = T. On the other hand, by Proposition 6.2 every word w
for which A(w) < B(w) is such that each finite prefix © < w admits a continuation w’
satisfying A(uw’) = B(uw'). Hence, sup,, C(uw’) = T for all u < w, implying the liveness
condition. ]

Finally, we provide a safety-liveness decomposition for nondeterministic automata with the
prefix-independent value functions we consider.

Theorem 9.5. Let Val € {LimSup, LimInf, LimInfAvg, LimSupAvg}. Given a Val-automaton
A, we can construct in PTIME a safety Val-automaton B and a liveness Val-automaton C,
such that A(w) = min(B(w),C(w)) for every infinite word w € X*.

Proof. Let @ = {qi,...,qn} be the set of states of A, let A4 be its transition relation, .4
its weight function, and X 4 its finite set of weights. We identify in PTIME the strongly
connected components Q1 W Q2 W ... W Qy, of A. For all k € {1,...,m}, we compute in
PT1iME, thanks to Proposition 6.2, the top value T of the automaton A9 for any g € Q.
Note that the choice of ¢ € Qi does not change T}, since the considered value function Val
is prefix independent. Additionally, for all k£ € {1,...,m}, we compute the highest value
Oy achievable by some simple cycle 7w, within Q. To clarify, we emphasize that T; > Oy
holds in general, and T > O when all runs starting in J; that achieve the top value Ty
eventually leave the component Q.

We explain briefly how ©f and 7;, are computed in PTIME. The value Oy, is the top value
of the automaton consisting of (), and a sink absorbing all outgoing edges weighted with
min X 4 — 1. As discussed in the proof of [CDH10, Thm. 3], the top value of a Val-automaton
is attainable by a lasso run. Due to the properties of Val, this lasso run can be transformed
into a simple cycle, i.e., a cycle without inner cycles. Because Val is prefix independent,
the path reaching the cycle of the lasso run can be removed to obtain a cycle run with the
same value. Also, if the cycle p = p1p2p3 has an inner cycle ps, then p can be shortened by
keeping the cycle achieving the highest value between ps and pjps. This proves that O is
attainable by a simple-cycle run.

Now, we briefly describe the computation of O and 7. First, we consider Val €
{LimInf, LimSup}. To compute Oy, we first construct a Val-automaton Ay, that is a copy of
the strongly connected component Qi extended to be total by adding a sink state with a self
loop of weight min X 4 — 1. Then, we compute the top value of A, which is by definition
©r. To compute 7, we first construct a graph G which is obtained from the underlying
graph of A; by removing all the edges corresponding to transitions of A; whose weights are
smaller than Oy, if Val = LimlInf or greater than ©y if Val = LimSup. Then, we compute a
cycle in G} using depth-first search and assign it to 7.
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Second, we consider Val € {LimInfAvg, LimSupAvg}. To compute O, we first construct
Ay as above, take the underlying directed graph of A, and multiply its edge weights by —1.
Then, we use Karp’s (dynamic programming) algorithm [Kar78] to compute the minimum
cycle mean in this directed graph, which gives us the value —0j. To compute 7y, it suffices
to appropriately maintain the backtracking pointers in Karp’s algorithm [CM17]. Recall
that the top value of an automaton can be computed in PTIME thanks to Proposition 6.2,
and note that the constructions described above are also in PTIME.

We define the set of states of C as P = {p1,p}, ..., pn,P,,PL}, in particular | P| = 2|Q|+1.
In the following, we define the transition relation A¢ of C. The states {p; | 1 < i < n}
are used to copy A, i.e., (pi,0,p;) € Ac if and only if (g;,0,q;) € A4. Additionally, for
all k € {1,...,m}, if T, = O then for all transitions of the simple cycle 7 of the form
(gi,0,95) € Aa, we have (p},0,p;) € Ac and (p;, 0,p}) € Ac. Finally, for all p; and o, we
have (p},0,p1) € A¢ and (p1,0,p1) € Ac. Now, we define the weight function ~¢ of C.
For all transitions of the form ¢t = (p;, o,p;) € Ac, we have v¢(t) = v4(¢,0,q;). For all
transitions of the from ¢t = (p,o0,p’) with p € P\ {p.} and p’ € {p, | 1 <i < n}, we have
vc(t) = T 4. Finally, v¢(p1,0,p1) = min X 4 for all . An example is given in Figure 3.

Next, we prove that C is live. The key argument is that, for each component Q) for
which Ty = O, the automaton C provides a continuation leading to achieve the highest
weight of A. Recall that liveness and top liveness coincide for sup-closed properties by
Theorem 5.21. As the considered value function Val defines sup-closed properties, as proved
in Proposition 6.2, the liveness of C reduces to checking whether SafetyCl(C) expresses the
constant function T 4. In fact, by construction, all finite runs ending in P\ {p, } admit a
continuation leading to achieve T 4. Additionally, for all finite runs ending in p , there is
another run over the same word that follows the states of A. Hence, the safety closure of C
maps every words to T 4, implying the liveness of C.

By Theorem 8.7, we can construct in PTIME a Val-automaton B expressing the safety
closure of A. We prove that the automata B and C yield a safety-liveness decomposition of
A. For all w € X¥, if there is a run of A over w of the form 77y for some finite run 7 in
A, then Ty = B(w) = A(w) < C(w) = T 4, otherwise A(w) = C(w). Since A(w) < B(w) by
construction, we have A(w) = min(B(w), C(w)), for all w € ¥¥.

Finally, let us note that the liveness component C constructed here may differ from the
liveness component ¥ of the decomposition in Theorem 5.13. To construct C efficiently, we
only take into account one simple cycle 7 that achieves the value O within each strongly
connected component S;. However, there may be many cycles within S}, achieving ©, which
would need to be taken into account to express V. []

Nondeterministic Sup-automata can be handled as LimInf- or LimSup-automata (Proposi-
tion 6.1) and decomposed accordingly. For deterministic automata, the decomposition in
Theorem 9.5 yields a deterministic safety component, but its liveness component may be
nondeterminizable. Whether deterministic LimInfAvg- and LimSupAvg-automata can be
decomposed into deterministic automata remains open.

10. CONCLUSIONS

We presented a generalization of safety and liveness that lifts the safety-progress hierarchy to
the quantitative setting of [CDH10] while preserving major desirable features of the boolean
setting such as the safety-liveness decomposition and connections to topology. Then, we
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Figure 3: A nondeterministic LimInfAvg-automaton A and its safety-liveness decomposition
into LimInfAvg-automata B and C, as presented in the proof of Theorem 9.5.

instantiated our framework with the specific classes of quantitative properties expressed by
automata.

Monitorability identifies a boundary separating properties that can be verified or falsified
from a finite number of observations, from those that cannot. Safety-liveness and co-safety-
co-liveness decompositions allow us separate, for an individual property, monitorable parts
from nonmonitorable parts. The larger the monitorable parts of the given property, the
stronger the decomposition. We provided the strongest known safety-liveness decomposition,
which consists of a pointwise minimum between a safe part defined by a quantitative safety
closure, and a live part which corrects for the difference.

Moreover, we studied the quantitative safety-liveness dichotomy for properties expressed
by Inf-, Sup-, LimInf-, LimSup-, LimInfAvg-, LimSupAvg-, and DSum-automata. To this end,
and solved the constant-function problem for these classes of automata. We presented
automata-theoretic constructions for the safety closure of these automata and decision
procedures for checking their safety and liveness. We proved that the value function Inf
yields a class of safe automata and DSum both safe and co-safe. For all common automata
classes, we provided a decomposition into a safe and a live component. We emphasize that
the safety component of our decomposition algorithm is the safety closure, and thus the best
safe approximation of a given automaton. We note that most of these algorithms have been
recently implemented in a tool [CHMS24, CHMS25].

We focused on quantitative automata [CDH10] because their totally-ordered value
domain and their sup-closedness make quantitative safety and liveness behave in particularly
natural ways; a corresponding investigation of weighted automata [Sch61] remains to be
done. We left open the complexity gap in the safety check of limit-average automata, and
the study of co-safety and co-liveness for nondeterministic quantitative automata, which is
not symmetric to safety and liveness due to the nonsymmetry in resolving nondeterminism
by the supremum value of all possible runs.
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