
A Theory of Register Monitors
Thomas Ferrère

IST Austria

Thomas A. Henzinger

IST Austria

N. Ege Saraç

Sabancı University

ABSTRACT
The task of a monitor is to watch, at run-time, the execution of a re-

active system, and signal the occurrence of a safety violation in the

observed sequence of events. While finite-state monitors have been

studied extensively, in practice, monitoring software also makes use

of unbounded memory. We define a model of automata equipped

with integer-valued registers which can execute only a bounded

number of instructions between consecutive events, and thus can

form the theoretical basis for the study of infinite-state monitors.

We classify these register monitors according to the number 𝑘 of

available registers, and the type of register instructions. In stark

contrast to the theory of computability for register machines, we

prove that for every 𝑘 ≥ 1, monitors with 𝑘 + 1 counters (with

instruction set ⟨+1,=⟩) are strictly more expressive than monitors

with𝑘 counters. We also show that adder monitors (with instruction

set ⟨1, +,=⟩) are strictly more expressive than counter monitors, but

are complete for monitoring all computable safety 𝜔-languages for

𝑘 = 6. Real-time monitors are further required to signal the occur-

rence of a safety violation as soon as it occurs. The expressiveness

hierarchy for counter monitors carries over to real-time monitors.

We then show that 2 adders cannot simulate 3 counters in real-time.

Finally, we show that real-time adder monitors with inequalities

are as expressive as real-time Turing machines.
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• Theory of computation� Quantitative automata; Logic and
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1 INTRODUCTION
The safety of reactive systems [27] can be guaranteed through

the use of several techniques, such as rigorous design principles,

systematic testing, or formal verification. Run-time monitoring is

one such technique [26]. It conjoins the system with a module

dedicated to ensuring that the sequence of events produced by the

system is correct. The monitor works on-line, and upon detection

of incorrect behavior can react, e.g., by interrupting the system.
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In theoretical terms, any monitor recognizes a safety𝜔-language

[39]. Safety languages are characterized by the fact that an invalid

sequence of events can always be identified by a finite prefix. An

important subclass is that of 𝜔-regular safety languages. These lan-

guages can be recognized by deterministic finite automata without

acceptance condition, and their applications in formal verification

and monitoring have been extensively studied, see e.g., [7, 17, 40].

Many interesting properties of reactive systems are not𝜔-regular.

For instance, consider a server that can receive requests with event

𝑎, issue grants with event 𝑏, be activated and deactivated with event

𝑐 . Property𝜓1 of this system is that while active, every grant must

be matched by an earlier request. It corresponds to the language

of 𝜔-words in which every finite subword beginning on an odd

occurrence of 𝑐 and ending before the next occurrence of 𝑐 features

more 𝑎’s than 𝑏’s. Property 𝜓1 is evidently not finite-state due to

a potentially unbounded number of pending requests. Real-life

examples of properties of this kind are plenty.

We propose an automaton model that captures the task of moni-

toring safety properties that lie beyond 𝜔-regular. In practice, run-

time monitors are programs that have access to a large, potentially

unbounded memory unit. Our machine model uses integer-valued

registers as for the register machines from computability theory

[29, 38]. This is particularly suited to model the monitoring of safety

properties expressed in terms of some quantities involved in the

computation of the observed system, such as time, energy, or other

functional indicators. The resulting notion of monitorability is very

different from computability, where two counter registers suffice

for Turing computation [30].

The register monitor shown in Figure 1 recognizes property𝜓1
of our example. It runs as long as the property is satisfied, and

halts in case of violation (this is indicated by no transitions being

available). Deactivating the server causes pending requests to be

𝑎

𝑎

𝑥 ← 𝑥 + 1

𝑏, 𝑥 > 0

𝑥 ← 𝑥 − 1

𝑐

𝑥 ← 0

𝑐

Figure 1: A register monitor for property𝜓1.

dropped, which is reflected by the update 𝑥 ← 0. Requests and

grants are processed using increments and decrements.

Consider now more powerful arithmetic operations such as ad-
dition. Property𝜓2 of the server requires that the average over time

of the number of pending requests never exceeds 5. Requests are as-

sumed to be granted in the order with which they arrive. A register

monitor recognizing this safety property is shown in Figure 2. The

sum of pending requests is maintained in a register 𝑟 with additive

https://doi.org/10.1145/3209108.3209194
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𝑎

𝑎, 𝑟 ≤ 5𝑡

𝑟 ← 𝑟 + 𝑥
𝑥 ← 𝑥 + 1, 𝑡 ← 𝑡 + 1

𝑏, 𝑟 ≤ 5𝑡

𝑟 ← 𝑟 + 𝑥
𝑥 ← 𝑥 − 1, 𝑡 ← 𝑡 + 1

𝑐

𝑥 ← 0

𝑐

Figure 2: A register monitor for property𝜓2.

updates 𝑟 ← 𝑟 + 𝑥 . Currently pending requests 𝑥 are counted as

previously, and time is counted in 𝑡 .

Observe that monitors of both Figure 1 and Figure 2 halt in real
time, in the sense that every safety violation causes the monitor to

halt as soon as it occurs. This is not strictly required by our defini-

tions, we also allow for a monitor to delay its verdict as necessary

to complete its computation.

Consider a variant of our server example, in which every request

and grant is preceded by a key communicated in binary form using

letters 𝑑 and 𝑒; the key is broadcast during the inactive period

of the server. Property 𝜓3 requires that every grant and request

use the key set during the previous inactive period of the server.

A register monitor recognizing this safety property is shown in

Figure 3. During a period of inactivity, the monitor uses register 𝑥

to store the key and register 𝑦 to store its length. During an active

period, the monitor uses alternate registers 𝑥 ′ and 𝑦′ to encode

every key. The length of the key being read should not exceed that

of the correct key (𝑦′ ≤ 𝑦), and upon occurrence of a request or

grant the two keys should match (𝑥 ′ = 𝑥 ). The monitor of Figure 3

halts in linear-time in the worst case, it does not halt on the first

erroneous bit. This should be sufficient in practice.

𝑑, 𝑥 ← 2𝑥

𝑦 ← 𝑦 + 1

𝑒, 𝑥 ← 2𝑥 + 1
𝑦 ← 𝑦 + 1

𝑑, 𝑦′ ≤ 𝑦

𝑥 ′ ← 2𝑥 ′

𝑦′ ← 𝑦′ + 1

𝑒, 𝑦′ ≤ 𝑦

𝑥 ′ ← 2𝑥 ′ + 1
𝑦′ ← 𝑦′ + 1

𝑎 ∪ 𝑏, 𝑥 = 𝑥 ′ ∧ 𝑦 = 𝑦′

𝑥 ′ ← 0

𝑦′ ← 0

𝑐

𝑥 ← 0

𝑦 ← 0

𝑐

𝑥 ′ ← 0

𝑦′ ← 0

Figure 3: A register monitor for property𝜓3.

In this work we mainly focus on monitors that halt in real time,

also called real-time monitors for short. We obtain the following

results.

Counter monitors are defined by considering the instruction set

⟨+1,=⟩. We prove that (𝑘 +1)-counter monitors are more expressive

than𝑘-countermonitors for every𝑘 ≥ 1. This holds both for general

monitors and for the class of monitors that halt in real time. We

also show that in counter monitors, resetting variables to zero as

in Figure 1 is equivalent to copying variables, and is an essential

operation. In general, copyless counter monitors are less expressive.

Adder monitors are defined by considering the instruction set

⟨1, +,=⟩. Adder monitors with 6 registers are complete for the class

of Turing computable safety languages, so unlike the counter hier-

archy, the adder hierarchy collapses at 𝑘 = 6. This is because using

2 adders, the pending part of an input 𝜔-word can be encoded in

real time, and using a further 4 counters an arbitrary Turing compu-

tation can be done asynchronously in parallel. We conjecture that

on the contrary the real-time adder hierarchy does not collapse at

any 𝑘 . As a first step in this direction, we show that in real-time

monitors, 3 counters are more powerful than 2 adders.

Linear register monitors are then defined by considering linear

arithmetic updates and inequality tests ≤. We obtain that 𝑘 counters

can be simulated by 4 linear registers in real time, for any 𝑘 ≥ 0.

We finally define polynomial register monitors by enabling the mul-

tiplication operation. This seemingly powerful model still cannot

recognize in real time the language of words in which “no number

repeats”, consisting of words #𝑤1#𝑤2#𝑤3# . . . in which𝑤𝑖 ≠ 𝑤 𝑗 for

every 𝑖 ≠ 𝑗 . The above language could specify a security protocol

where every key should be unique, also known as a nonce. It is prov-
ably not recognizable by real-time polynomial register monitors.

When the numbers are presented in unary, the resulting language

is recognizable by a linear register monitor in real time.

Related Work
Register machines were introduced in [29] as an abstract model

of computation. The notion of real-time computation was, to our

knowledge, first studied in [41]. Real-time Turing machines were

defined and investigated by [33], showing that 2-tape machines

are more expressive than 1-tape machines. A language that is not

real-time recognizable was described explicitly for the first time in

[20]. Real-time computation in general was also studied in [35].

Defining real-time counter machines as language recognizers

and sequence generators, [14, 15] characterize the power of counter

machines relative to Turing machines and establish a hierarchy of

𝑘 + 1 versus 𝑘 real-time counters. A hierarchy of 𝑘 + 1 versus 𝑘

tapes for real-time Turing machines was proved in [1]. Following

the introduction of the information-theoretic approach by [31], this

result was extended to other models of on-line computations [28].

Formal verification problems using temporal logic and arithmetic

registers were surveyed in [9]. Reachability in register machines

with polynomial updates was studied by [13], and is undecidable for

more than one register. The use of formal languages in the context

of monitoring was advocated by [16]. Due to the predominance of

linear temporal logic in formal verification, the study of formal mon-

itoring has largely been focused on finite-state languages [26]. The

field of run-time verification [25] is also concerned with software

engineering issues, which need not involve real-time constraints.

A notable exception is the model proposed by [8] for on-line moni-

toring with Boolean and integer-valued stream variables.

The term register automata sometimes refers to computational

models with register variables ranging over an infinite input al-

phabet, see [10, 19, 22]. The use of register automata for run-time

verification was studied in [18]. In [34] was proposed a monitor

model consisting of automata in which registers, ranging over input

values, are bound by first-order quantifiers. We refer the reader to

[21] for a survey of the monitoring of data languages. Unlike all of

the above, in this work we assume a finite input alphabet of events.
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Automata with registers were also defined as studied in [3] as

a generalization of weighted automata. We borrow the notion of

copyless registers from [3]. The extension of cost registers to arith-

metic operations was studied in [6]. Cost-register automata also aim

at providing foundations for regular stream processing languages

[4]. The application of stream processing to network monitoring

was considered in [42]. In general, the work on stream processing

focuses on the algebraic specification, and efficient compilation of

on-line stream processors. We instead study the notion of infinite-

state monitorability.

To our knowledge, this paper is the first systematic theoretical

study of register machines as on-line and real-time monitors.

2 DEFINITIONS
Let Σ be a finite alphabet of events. The length of a finite word

𝑤 ∈ Σ∗ is denoted |𝑤 |. Given words 𝑢 ∈ Σ∗ and 𝑤 ∈ Σ∗ ∪ Σ𝜔 , we
write 𝑢 ≺ 𝑤 , and say that 𝑢 is a (strict) prefix of 𝑤 , when there

exists 𝑣 with |𝑣 | > 0 such that 𝑢𝑣 = 𝑤 .

2.1 Safety
A word 𝑢 ∈ Σ∗ is a bad prefix for some language 𝐿 ⊆ Σ𝜔 when for

all words 𝑤 ∈ Σ𝜔 , if 𝑢 ≺ 𝑤 then 𝑤 ∉ 𝐿. A language 𝐿 ⊆ Σ𝜔 is a

safety language when for all𝑤 ∉ 𝐿 there exists a bad prefix 𝑢 ∈ Σ∗
for 𝐿 with 𝑢 ≺ 𝑤 . These definitions conform to [2].

Safety constitutes a privileged class of properties, for which a

monitor is able to produce a permanent violation verdict, when a

bad prefix is observed. Note that in general other kinds of properties

can be considered to be amenable to monitoring [11]. Allowing

such properties immediately raises the question of what type of

verdict or reaction is expected of a monitor, since a seemingly bad

prefix can sometimes be prolonged into a satisfying execution. In

this paper we restrict our attention to safety properties.

Not all safety properties ought to be considered monitorable, for

the simple reason that they may not be computable in a reasonable

sense. Since we work with 𝜔-words, we will naturally consider

non-terminating computations and take the following definition:

A safety language 𝐿 is said to be computable when there exists a

Turing machine that halts precisely on the infinite words not in 𝐿.

2.2 Register Monitors
Take 𝑋 to be a set of integer variables, called registers. Let 𝑇 be a

set of functions and relations over the integers, called instruction
set. An update is a mapping from variables to terms over 𝑇 . A test
is a conjunction of atomic formulas over 𝑇 and their negation. The

set of updates and tests on variables 𝑋 are respectively denoted

Γ(𝑋 ) and Φ(𝑋 ). For any register valuation 𝑣 : 𝑋 → Z and update
𝛾 ∈ Γ(𝑋 ), we define the updated valuation 𝑣 [𝛾] : 𝑋 → Z by letting

𝑣 [𝛾] (𝑥) = 𝑣 (𝛾 (𝑥)) for all 𝑥 ∈ 𝑋 . For any 𝜙 ∈ Φ(𝑋 ) we write 𝑣 |= 𝜙
when 𝜙 holds true under valuation 𝑣 .

Definition 2.1 (Monitor). A (deterministic) register monitor is a
tuple (Σ, 𝑋,𝑄, 𝑠,Δ) where Σ is an alphabet, 𝑋 is a set of registers,

𝑄 is a set of control locations, 𝑠 ∈ 𝑄 is the initial location, and

Δ ⊆ 𝑄 × Σ × Φ(𝑋 ) × Γ(𝑋 ) × 𝑄 is a set of edges such that for

every (𝑞, 𝜎, 𝜙1, 𝛾1, 𝑟1) ≠ (𝑞, 𝜎, 𝜙2, 𝛾2, 𝑟2) ∈ Δ the formula 𝜙1 ∧ 𝜙2 is
unsatisfiable. The sets Σ, 𝑋,𝑄,Δ are assumed finite.

Let A = (Σ, 𝑋,𝑄, 𝑠,Δ) be a register monitor. A configuration
of A is a pair (𝑞, 𝑣) of location 𝑞 ∈ 𝑄 and valuation 𝑣 : 𝑋 → Z.
Let 𝜎 ∈ Σ be an event. A transition

𝜎−→ of A is a relation between

configurations defined by (𝑞, 𝑣) 𝜎−→ (𝑞′, 𝑣 ′) iff 𝑣 ′ = 𝑣 [𝛾] and 𝑣 |= 𝜙
for some edge (𝑞, 𝜎, 𝜙,𝛾, 𝑞′) ∈ Δ. A run of automatonA over some

word𝑤 = 𝜎1𝜎2𝜎3 . . . is a valid sequence of transitions

(𝑞0, 𝑣0)
𝜎1−−→ (𝑞1, 𝑣1)

𝜎2−−→ (𝑞2, 𝑣2)
𝜎3−−→ . . .

labeled by𝑤 where 𝑞0 = 𝑠 and 𝑣0 (𝑥) = 0 for all 𝑥 ∈ 𝑋 . An infinite

word𝑤 is accepted byA whenA has a run over𝑤 . We say thatA
errs over a finite word𝑤 when A had no run over𝑤 . We call lan-

guage of A and denote by 𝐿(A) the set of infinite words accepted
by A.

Let 𝜏 : N→ N be a monotone function. A register monitor A is

said to halt in time 𝜏 when for every bad prefix 𝑤 of 𝐿(A), there
exists a suffix 𝑣 ⪰ 𝑤 such that |𝑣 | ≤ 𝜏 ( |𝑤 |) andA errs on 𝑣 . We say

thatA ′ simulatesA in time 𝜏 ′ when 𝐿(A) = 𝐿(A ′) and for every 𝜏
such thatA halts in time 𝜏 ,A ′ halts in time 𝜏 ′ ◦𝜏 . MonitorsA and

A ′ are said to be time-equivalent when they simulate each other

in real time. Here and throughout this paper, in real time means

in time 𝑛 ↦→ 𝑛. Observe that two monitors are time-equivalent iff

they err on the same set of prefixes.

2.3 Closure Properties
Like the class of safety languages that contains it, the class of

register monitorable languages is closed under positive Boolean op-

erations. This is easily shown using standard product constructions

over deterministic automata.

Theorem 2.2. For any instruction set 𝑇 and function 𝜏 , the set of
languages recognizable by register monitors in time 𝜏 is closed under
union and intersection.

The set of register monitorable languages is obviously not closed

under complement. Over the alphabet {𝑎, 𝑏}, the language 𝑎𝜔 is

register monitorable but its complement is not safety. For a given

instruction set 𝑇 and function 𝜏 , the set of languages monitorable

in time 𝜏 is usually not closed under projection.

Register monitors have a finite set of edges, so that any given

monitor only executes boundedly many instructions per input sym-

bol. Each register instructions can be seen as an oracle, taking

constant computation time. Let us call size of a term the height of

its syntax tree.

Definition 2.3 (Rate). A register monitor has rate 𝑐 when the size

of terms it features is at most 𝑐 .

The rate of a monitor is intuitively related to its maximum num-

ber of instructions per test or update.

Define register 𝜖-monitors similarly as register monitors, but with

transitions taken in 𝑄 × (Σ ∪ {𝜖}) × Φ(𝑋 ) × Γ(𝑋 ) ×𝑄 and terms

of size at most 1. Silent transitions, labeled with 𝜖 , do not consume

any input symbol and can occur at arbitrary positions in a run.

Definition 2.4 (Delay). A register 𝜖-monitor has delay 𝑐 when its

maximum number of consecutive silent transitions is at most 𝑐 − 1.
Theorem 2.5. Let 𝑐 be a positive integer. Register 𝜖-monitors with

delay 𝑐 and register monitors with rate 𝑐 are time-equivalent for-
malisms.
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3 FINITE-STATE MONITORS
A register monitor with an empty instruction set, or equivalently,

without registers, is called a finite-state monitor. They constitute a

broad class of monitors which capture well-studied properties.

Example 3.1. Consider the language (𝑎∪𝑏𝑎)𝜔 over events 𝑎 and

𝑏, consisting of infinite words in which there are no consecutive 𝑏

events. This safety language can be recognized by the finite-state

monitor of Figure 4.

𝑏

𝑎

𝑎

Figure 4: A finite-state monitor for the language (𝑎 ∪ 𝑏𝑎)𝜔 .

Finite-state monitors correspond to the subclass of Büchi au-

tomata with trivial acceptance condition, also known as safety
automata. The use of finite and Büchi automata as a monitor model

was considered before in multiple related research efforts, see [16]

in particular. For the case of safety languages, we make the follow-

ing observation:

Theorem 3.2. For any finite-state monitor A with 𝑛 states, there
exists a real-time finite-state monitor A ′ with 𝑛′ ≤ 𝑛 states equiva-
lent to A.

Proof. We say that a location 𝑞 ofA is doomed if no cycle in the

transition graph of A is reachable from 𝑞. Removing all doomed

states of A yields A ′. One can easily check that 𝐿(A) = 𝐿(A ′)
(a prefix 𝑤 is bad for 𝐿(A) iff 𝑤 is bad for 𝐿(A ′)) and that A ′ is
real-time (A ′ errs on all its bad prefixes). □

This contrasts with the situation of general 𝜔-regular languages,

including co-safety ones. The construction of a recognizer of bad

prefixes from a nondeterministic Büchi automaton involves an

unavoidable exponential increase in the number of states [24], even

when using nondeterminism.

The applications of finite automata for monitoring and run-time

verification are numerous and well-studied, see [7, 17] in particular.

The special status of 𝜔-regular languages is related to the decidabil-

ity of their inclusion problem, upon which many formal verification

results rely. For monitoring purposes, more expressive formalisms

can and should be investigated.

4 COUNTER MONITORS
Definition 4.1 (Counter Monitors). A register monitor with the

instruction set ⟨+1,=⟩ is called a counter monitor.

Let us give a typical example of safety language which is counter

monitorable, but not finite-state monitorable. Given 𝜎 in some al-

phabet Σ, and𝑤 ∈ Σ∗, we denote by |𝑤 |𝜎 the number of occurrences

of event 𝜎 in the word𝑤 .

Example 4.2. Let Σ = {𝑎, 𝑏}, and consider the language

𝐿1 = {𝑤 ∈ Σ𝜔 | ∀𝑢 ≺ 𝑤, |𝑢 |𝑎 ≥ |𝑢 |𝑏 }.

If 𝑎 stands for a request and 𝑏 for a grant, language 𝐿1 requires that

every grant is matched by an earlier request (but not all requests

may be granted). This language is recognized by the two-counter

automaton of Figure 5, which counts occurrences of 𝑎 in 𝑥 and

occurrences of 𝑏 in 𝑦, and runs as long as 𝑥 ≥ 𝑦.

𝑏, 𝑦 + 1 ≠ 𝑥

𝑦 ← 𝑦 + 1

𝑎

𝑥 ← 𝑥 + 1

𝑎

𝑥 ← 𝑥 + 1

𝑏, 𝑦 + 1 = 𝑥

𝑦 ← 𝑦 + 1

Figure 5: A counter monitor for the language 𝐿1.

4.1 Counter Hierarchy
It was shown by [15] that in counter automata over finite words,

every new counter creates additional expressive power. We show

that this result carries over to our counter monitor model. For this

we take the following language 𝐿𝑘 as a witness. This language gen-

eralizes 𝐿1 of Example 4.2 by taking an alphabet Σ𝑘 = {0, 1, . . . , 𝑘}
of 𝑘 + 1 letters, and letting

𝐿𝑘 = {𝑤 ∈ Σ𝜔
𝑘
| ∀𝑖 < 𝑘,∀𝑢 ≺ 𝑤, |𝑢 |𝑖+1 ≥ |𝑢 |𝑖 }.

It consists of all words in which every occurrence of event 𝑖 + 1
must be matched by the occurrence of an earlier event 𝑖 . For an

alphabet with 𝑘 + 1 letters, exactly 𝑘 + 1 counters are needed.
Let 𝐿 be a language over Σ. Prefixes 𝑢1, 𝑢2 ∈ Σ∗ are said to

be equivalent relative to 𝐿, denoted 𝑢1 ∼𝐿 𝑢2, when 𝑢1𝑤 ∈ 𝐿 iff

𝑢2𝑤 ∈ 𝐿 for all infinite words𝑤 ∈ Σ𝜔 . Let A be a counter monitor

over the alphabet Σ. Configurations (𝑞1, 𝑣1) and (𝑞2, 𝑣2) are said
to be equivalent when (𝑞1, 𝑣1)

𝑢−→ (𝑞, 𝑣) iff (𝑞2, 𝑣2)
𝑢−→ (𝑞, 𝑣) for all

finite words𝑢 ∈ Σ∗. Here by (𝑞, 𝑣) 𝑢−→ (𝑞′, 𝑣 ′) we denote a sequence
of transitions from (𝑞, 𝑣) to (𝑞′, 𝑣 ′) and labeled with 𝑢.

Theorem 4.3. For every 𝑘 ≥ 1, there exists a real-time (𝑘 + 1)-
counter monitor without any equivalent 𝑘-counter monitor.

Proof. Let us fix a number 𝑘 ≥ 1 of registers, and consider the

language 𝐿𝑘 . Notice that 𝐿𝑘 is recognizable by a (𝑘 + 1)-counter
monitor constructed similarly as for Example 4.2. We assume to-

wards a contradiction that 𝐿𝑘 is also recognizable by a 𝑘-counter

monitor, and show that the number of inequivalent prefixes of

length up to 𝑛 relative to 𝐿𝑘 is strictly greater than the number of

possible configurations that a 𝑘-counter monitor can reach after

reading a prefix of length up to 𝑛.

A simple condition suffices to characterize the equivalence rel-

ative to 𝐿𝑘 : it holds that 𝑢1 ∼𝐿𝑘 𝑢2 iff there is an integer 𝑝 for

which |𝑢1 |𝑖 = |𝑢2 |𝑖 + 𝑝 holds for all 0 ≤ 𝑖 ≤ 𝑘 . We represent each

equivalence class of ∼𝐿𝑘 by a string 𝑢 such that |𝑢 |𝑖 = 0 for some 𝑖 .

Then, the number of equivalence classes of prefixes of length up to

𝑛, computed as a difference of two binomial coefficients, is bounded

from below as follows:(
𝑛 + 𝑘 + 1
𝑘 + 1

)
−
(
𝑛

𝑘 + 1

)
>
(𝑛 + 1)𝑘+1 − 𝑛𝑘+1
(𝑘 + 1)! >

𝑛𝑘

𝑘!
. (1)
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.
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1-CM

=
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Figure 6: Counter hierarchy. FSM and CM stand for finite-
state monitor and counter monitor, respectively.

For configurations of counter monitors we observe a similar

condition: (𝑞1, 𝑣1) and (𝑞2, 𝑣2) are equivalent iff 𝑞1 = 𝑞2 and there

exists an integer 𝑝 for which 𝑣1 (𝑥) = 𝑣2 (𝑥) + 𝑝 holds for all 𝑥 ∈ 𝑋 .
A configuration (𝑞, 𝑣) denotes an equivalence class if 𝑣 (𝑥) = 0

for some 𝑥 ∈ 𝑋 . Now, consider an arbitrary 𝑘-counter monitor

with𝑚 locations and rate 𝑐 . The number of equivalence classes of

configurations after it reads a prefix of length up to 𝑛 is computed

similarly and bounded from above as follows:

𝑚

[(
𝑐𝑛 + 𝑘
𝑘

)
−
(
𝑐𝑛

𝑘

)]
< 𝑚

[
(𝑐𝑛 + 𝑘)𝑘

𝑘!
− (𝑐𝑛 − 𝑘 + 1)

𝑘

𝑘!

]
<
𝑚(2𝑘 − 1)
(𝑘 − 1)! (𝑐𝑛 + 𝑘)

𝑘−1 .

(2)

For sufficiently large 𝑛, the lower bound in (1) exceeds the upper

bound in (2): There are more inequivalent prefixes of length up to 𝑛

relative to 𝐿𝑘 than configurations a 𝑘-counter monitor can possibly

reach after reading such prefixes. Thus no 𝑘-counter monitor can

recognize 𝐿𝑘 . □

In Theorem 4.3, the 𝑘-counter simulator is not required to halt in

real time. Observe that there exist languages counter-monitorable

but not in real time. Such languages can be found in the form of

𝐿𝑆 =
⋃

𝑛∈𝑆 𝑎
𝑛𝑏𝜔 ∪𝑎𝜔 where 𝑆 is a computable set with complexity

more than exponential. For example, take 𝑃 to be the set of valid

Presburger arithmetic sentences given in binary notation. Since the

complexity of deciding Presburger arithmetic is doubly exponential,

it follows that 𝐿𝑃 is not real-time counter monitorable. This is

because over the prefix 𝑎𝑛 , computations are linear-time relative to

𝑛 (exponential-time relative to the length of 𝑛). The language 𝐿𝑃
can be monitored by reading 𝑛 over the prefix 𝑎𝑛 and deciding the

validity of formula number 𝑛 over a suffix 𝑏𝑚 for𝑚 exponential in

𝑛 (doubly-exponential time in the length of 𝑛).

The results of this subsection are summarized in Figure 6.

4.2 Trading Rate for Locations
By Theorem 4.3 the number of registers in a counter monitor cannot

be reduced through increasing its rate or its number of locations.

On the contrary, for fixed number of registers, the rate can always

be reduced at the expense of increasing the number of locations.

This can be shown as an immediate application of the “counter com-

pression” idea of [14] that we recall for the sake of completeness.

Theorem 4.4. Every 𝑘-counter monitor with𝑚 locations and rate
𝑐 > 1 has a time-equivalent 𝑘-counter monitor with𝑚𝑐𝑘 locations
and rate 1.

Proof. Let A = (Σ, 𝑋,𝑄, 𝑠,Δ) be a counter monitor with 𝑋 =

{𝑥1, . . . , 𝑥𝑘 } and rate 𝑐 . We construct a time-equivalent counter

monitor 𝐵 = (Σ, 𝑋 ′, 𝑄 ′, 𝑠 ′,Δ′) with rate 1 by delaying the updates

and remembering them using the finite state control. Let 𝑋 ′ =
{𝑦1, . . . , 𝑦𝑘 }, and 𝑄 ′ = 𝑄 × {0, . . . , 𝑐 − 1}𝑘 with initial state 𝑠 ′ =
(𝑠, 0, . . . , 0). During a run, we store in 𝑦𝑖 the integer division of 𝑥𝑖

by 𝑐 , and use the additional component {0, . . . , 𝑐 − 1}𝑘 in locations

of 𝑄 ′ to store the remainders. Formally, we maintain between each

pairs of configuration of A and A ′ the invariant 𝑥𝑖 = 𝑐𝑦𝑖 + 𝑑𝑖
where 𝑑𝑖 is the (𝑖 + 1)st component of the location, for all registers

𝑖 ∈ {1, . . . , 𝑘}. We proceed to construct the set of edges Δ′. For each
original edge (𝑞, 𝜎, 𝜙𝑥 , 𝛾, 𝑞′) ∈ Δ and values of 𝑑1, . . . , 𝑑𝑘 , we add

to Δ′ an edge from (𝑞, 𝑑1, . . . , 𝑑𝑘 ) to (𝑞′, 𝑑 ′1, . . . , 𝑑
′
𝑘
) labeled 𝜎 with

test 𝜙𝑦 and update as follows. For 𝑎 < 𝑐 −𝑑 𝑗 , an update 𝑥𝑖 ← 𝑥 𝑗 +𝑎
translates as 𝑦𝑖 ← 𝑦 𝑗 . For 𝑎 ≥ 𝑐 −𝑑 𝑗 , it translates as 𝑦𝑖 ← 𝑦 𝑗 + 1. In
both cases we let 𝑟 ′

𝑖
≡ 𝑟 ′

𝑗
+ 𝑎 mod 𝑐 . The test 𝜙𝑦 is obtained from

𝜙𝑥 by replacing every atomic formula 𝑥𝑖 + 𝑎 = 𝑥 𝑗 + 𝑏 by 𝑦𝑖 = 𝑦 𝑗 if

𝑑𝑖 + 𝑎 = 𝑑 𝑗 + 𝑏, by 𝑦𝑖 = 𝑦 𝑗 + 1 if 𝑑𝑖 + 𝑎 = 𝑑 𝑗 + 𝑏 + 𝑐 , by 𝑦𝑖 + 1 = 𝑦 𝑗 if
𝑑𝑖 + 𝑎 + 𝑐 = 𝑑 𝑗 + 𝑏, and by ⊥ otherwise. □

Since 𝑘 locations can be emulated by a single register with rate

𝑘 , we have that in a counter monitor, locations and rate are inter-

changeable resources.

4.3 Counter Variants
We show in the following that copying can be seen as some form of

reset. Let us first observe that inequality tests do not increase the

expressive power of counter monitors. Without loss of generality,

assume a rate of 1. The changes of truth status of an inequality

will always be preceded by an equality becoming true and/or an

increment of one of its variables. Some additional state component

thus suffices to track the current truth value of the inequality.

Theorem 4.5. Register monitors with instruction set ⟨+1,=⟩ and
⟨+1, ≥⟩ are equally expressive.

As for counter machines, we also obtain equivalent definitions

by considering registers that are incremented, decremented, and

tested for zero. Every register 𝑥 in a monitor with instruction set

⟨−1, +1,=0⟩ can be counted as the difference of a positive part

𝑥+ and a negative part 𝑥−, and has value zero when 𝑥− = 𝑥+.
Conversely the difference 𝑥 − 𝑦 between every pair of registers 𝑥

and 𝑦 in a monitor with instruction set ⟨+1,=⟩ can be counted in

some register 𝑟𝑥−𝑦 , such that 𝑟𝑥−𝑦 = 0 iff 𝑥 = 𝑦. Thus:

Theorem 4.6. Register monitors with instruction set ⟨+1,=⟩ and
⟨−1, +1,=0⟩ are equally expressive.

The above simulations are real-time, and in the case of Theo-

rem 4.6 preserve the rate and number of locations.

A significant difference between our model and standard counter

automata is the ability to duplicate registers. A copy is an update

𝛾 featuring a variable 𝑦 ∈ 𝑋 that appears more than once in 𝛾 (𝑋 ).
In other words, a copy update features a variable which occurs

on the right-hand side of more than one assignment. Let us give
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an example of counter monitor that makes essential use of a copy

update.

Example 4.7. Let Σ′ be the alphabet of events obtained from

Σ = {𝑎, 𝑏} by letting Σ′ = Σ∪ {#}. Consider the following language:
𝐿′
1
= 𝐿1 ∪

{
𝑤 ∈ Σ′𝜔 | ∀𝑢 ∈ Σ′∗,∀𝑣 ∈ Σ∗, 𝑢#𝑣 ≺ 𝑤 ⇒ |𝑣 |𝑎 ≥ |𝑣 |𝑏

}
where 𝐿1 is the language of Example 4.2. It describes words such

that every occurrence of event 𝑏 is matched by an earlier occur-

rence of event 𝑎 after the last event #. A simple modification of the

automaton of Figure 5 enables to recognize the language 𝐿′
1
. For

this we simply add two edges labeled #, 𝑥 ← 𝑦 going back to the

initial state.

Using the terminology of [3], we call copyless a register monitor

without copy updates. We now show that removing the ability to

copy results in a loss of expressiveness.

Suppose, towards a contradiction, the existence of a copyless

counter monitor A with 𝑘 registers, 𝑚 locations and such that

𝐿(A) = 𝐿′
1
. It is easy to check that the copyless quality of a monitor

is preserved by the translation of Theorem 4.6. Thus we assume

without loss of generality that A has instruction set ⟨−1, +1,= 0⟩.
We further assume with Theorem 4.4 that A has rate 1.

Lemma 4.8. For any 𝑑 ∈ N and initial configuration (𝑞0, 𝑣0) there
exists an integer 𝑛 ≤ (2𝑑 +1)𝑘 +1 such thatA has a run from (𝑞0, 𝑣0)
on 𝑎𝑛 ending in a configuration (𝑞𝑛, 𝑣𝑛) which satisfies |𝑣 (𝑥) | > 𝑑

for at least one register 𝑥 ∈ 𝑋 .

Using the above lemma, we show that there is no copyless

counter monitor to recognize 𝐿′
1
by constructing a prefix that is

misclassified by A as described above. It will follow that:

Theorem 4.9. Copyless counter monitors are strictly less expressive
than counter monitors.

Proof. We assume the existence of a register monitor A with

𝑘 registers and𝑚 locations that recognizes 𝐿′
1
and satisfying the

assumptions above. For technical convenience we also assume𝑚 ≥
2. Informally, we say that a register 𝑥 ∈ 𝑋 is inactive if its absolute
value exceeds a bound such that it cannot be restored back to 0 for

a certain class of inputs. Note that whenA has one of its 𝑘 registers

inactivated, it is equivalent to a monitor with 𝑘 − 1 registers over
that class of inputs.

The idea is to construct a prefix 𝑢 in such a form that the run of

A over 𝑢 results in a configuration where all registers hold a value

above 2𝑚. Then A cannot process all continuations of 𝑢 correctly,

since it can distinguish inequivalent prefixes of length 0 ≤ 𝑙 ≤ 2𝑚

over the alphabet {𝑎, #} by using its finite state memory consisting

of𝑚 locations while blindly updating its counters.

The string 𝑢 will be of the form 𝑢𝑘#𝑢𝑘−1# . . . 𝑢2#𝑢1 where 𝑢𝑖 =
𝑎𝑛𝑖 . We choose each 𝑛𝑖 such that after reading 𝑢𝑘# . . . 𝑢𝑘−𝑖−1# at
least 𝑖 registers are inactive. For this we rely on Lemma 4.8. Each

upper bound 2𝑚(2𝑑𝑖 +1)𝑘𝑖 +1 for inactivity depends on the number

𝑘𝑖 of registers and the length 𝑑𝑖 of the remaining part of the prefix.

Therefore, we choose 𝑑1 = 2𝑚 + 1 as previously indicated, and

construct 𝑢 from right to left.

Considering 𝑢1 we have 𝑑1 = 2𝑚 + 1 and 𝑘1 = 1. By Lemma 4.8

we can choose 𝑛1 such that 𝑛1 ≤ 2𝑚(2𝑑1 +1)𝑘1 +1 =𝑚1. We ensure

that the single active register becomes inactive after reading 𝑢1 by

choosing the appropriate 𝑛1 ≤ 𝑚1. Then, for 𝑢2 we require 𝑑2 =

𝑚1+𝑑1+1, 𝑘2 = 2, and𝑛2 ≤ 𝑚2 = 2𝑚(2𝑑2+1)𝑘2 +1. By induction on
𝑖 we can obtain 𝑑𝑖 =𝑚𝑖−1 +𝑑𝑖−1 + 1 and 𝑛𝑖 ≤ 𝑚𝑖 = 2𝑚(2𝑑𝑖 + 1)𝑖 + 1
satisfying the desired assumptions. At the 𝑖th separator A behaves

as a (𝑘 − 𝑖)-counter monitorA𝑖 . Applying Lemma 4.8 onA𝑖 for the

next separator we obtain that another register becomes inactive.

This gives us the sequence 𝑢.

We now consider suffixes of the form𝑢𝑤 where𝑤 is a finite word

in the language 𝐹 =
⋃

2𝑚
𝑙=0
(𝑎∪#)𝑙 . There exists a pair of special words

in 𝐹 of the form𝑤 = 𝑤1#𝑤2# . . . #𝑤𝑙 and𝑤
′ = 𝑤 ′

1
#𝑤 ′

2
# . . . #𝑤 ′

𝑙
with

𝑤 𝑗 ,𝑤
′
𝑗
∈ 𝑎∗ for 1 ≤ 𝑗 ≤ 𝑙 satisfying the following condition: there

exists 1 ≤ 𝑖 < 𝑙 and a non-empty word 𝑣 such that (1)𝑤𝑖 = 𝑤
′
𝑖
𝑣 and

𝑤 ′
𝑙
= 𝑤𝑙𝑣 ; (2) the monitorA is in the same location before and after

reading 𝑣 at such positions in 𝑢𝑤 and 𝑢𝑤 ′; (3) for all 1 ≤ 𝑗 < 𝑙 with
𝑗 ≠ 𝑖 we have𝑤 𝑗 = 𝑤

′
𝑗
. Then since counter values are larger than

2𝑚 after reading 𝑢, the runs of A over 𝑢𝑤 and 𝑢𝑤 ′ are the same

except for one extra loop over 𝑣 at positions 𝑖 and 𝑙 , respectively.

Additive counter updates are commutative, so thatA is in the same

configuration after reading 𝑢𝑤 and 𝑢𝑤 ′. But 𝑢#𝑤𝑏𝑝#𝑎𝜔 ∈ 𝐿′
1
while

𝑢#𝑤 ′𝑏𝑝#𝑎𝜔 ∉ 𝐿′
1
for 𝑝 = |𝑤𝑙 |, so that A ′ does not recognize 𝐿′

1
, a

contradiction. □

Definition 4.10 (Reset). We call reset-counter monitor a register
monitor with the instruction set ⟨0, +1,=⟩.

The reset operation can replace the ability to copy without any

loss of expressive power. To show this, we proceed by translating a

counter monitor in two steps using a simple variant of Theorem 4.6.

The first step applies the translation and yields a copyless monitor

with instruction set ⟨0, +1,−1,=0⟩. For this, it suffices to notice that

duplicating a value in unsigned counters with 𝑥 ← 𝑧,𝑦 ← 𝑧 has

the effect of a reseting to zero in signed counters, emulated with

𝑟𝑥−𝑦 ← 0. The second step applies the reverse translation and

yields a copyless monitor with instruction set ⟨0, +1,=⟩.

Theorem 4.11. For any counter monitor, there exists a time-
equivalent copyless reset-counter monitor.

5 ADDER MONITORS
We now enhance counter monitors with the ability to increment

the content of one register by the content of another.

Definition 5.1 (Adder Monitors). A register monitor with the in-

struction set ⟨1, +,=⟩ is called an adder monitor.

5.1 Expressiveness
The ability to compute sums of registers gives adder monitors

dramatically more expressive power, and notably the ability to

encode the prefixes of a word in real time.

Example 5.2. Let Σ′ be an alphabet of events defined by letting

Σ′ = Σ ∪ {#}, where Σ = {𝑎, 𝑏} as previously. Consider the safety
language𝑀1 =

⋃
𝑤∈Σ∗ #(𝑤#)𝜔 ∪ #(𝑤#)𝜔Σ𝜔 . It consists of infinite

sequences starting with # in which one unique finite word over Σ
repeats, each consecutive pair of occurrences separated by #. The

language𝑀1 is recognized by the real-time adder monitor with 2

registers of Figure 7. The part of a word before a separator, if any,

is encoded in 𝑥 using a binary representation. Later occurrences of
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finite words are encoded in 𝑦. At every separator the encoding of

the two words must match.

#

𝑥 ← 1

𝑎

𝑥 ← 2𝑥

𝑏

𝑥 ← 2𝑥 + 1

𝑎

𝑦 ← 2𝑦

𝑏

𝑦 ← 2𝑦 + 1

#, 𝑥 ≠ 𝑦

𝑦 ← 1

#

𝑦 ← 1

Figure 7: An adder monitor recognizing language𝑀1.

It is easy to see that the language𝑀1 requires registers growing

at least exponentially fast in value with the length of the word.

Since counter monitors have registers only growing linearly (and

their product polynomially) fast, we have:

Theorem 5.3. Adder monitors are more expressive than counter
monitors.

This strict separation between adders and counters holds for

both real-time monitors, and for monitors that do not halt in real

time. The extent of the expressiveness of real-time adder monitors is

unknown. In particular, we do not know if a hierarchy, analogous to

the one of Section 4 exists. Consider the following set of languages.

Example 5.4. Let Σ′ = Σ ∪ {#}, where Σ = {𝑎, 𝑏} as previously.
Events 𝑎 and 𝑏 now represent bit values and event # serves as a

delimiter. We define the safety language

𝑀𝑘 =
⋃

𝑤1,...,𝑤𝑘 ∈Σ∗
#(𝑤1# ∪ . . . ∪𝑤𝑘#)𝜔 ∪ #(𝑤1# ∪ . . . ∪𝑤𝑘#)∗Σ𝜔

consisting of sequences of words between separators, in which at

most𝑘 unique words repeat. This couldmodel some communication

channel in which processes periodically broadcast some unique

identifier, and the safety property being that at most 𝑘 processes

can use the channel.

Example 5.4 seem to indicate that increasing the number of

registers in real-time adder monitors always leads to a gain in

expressive power. For general adder monitors, not required to halt

in real-time, that cannot be the case. We show on the contrary that

the hierarchy collapses at 𝑘 = 6.

Theorem 5.5. Adder monitors with 6 registers can recognize all
computable safety languages.

Proof. Assume an alphabet Σ = {𝑎, 𝑏}, larger alphabets can
easily be accommodated. We use 6 registers 𝑟, 𝑠, 𝑡, 𝑥,𝑦, 𝑧 and simu-

late a deterministic Turing machine whose tape initially contains

the input word. This resembles the standard simulation of Turing

machines by counter machines [36], however with the additional

technical complications that the input must be stored for delayed

processing and that counters cannot be decremented. Register 𝑡

will store the pending input in binary, register 𝑠 is used as a cursor

to write 𝑡 , registers 𝑥 and 𝑦 respectively store the parts of the tape

at the left and right of the read/write head, and registers 𝑟 and 𝑧

are used as temporary variables to perform divisions.

At every new input event the cursor, initialized to 1, is moved

to the right by letting 𝑠 ← 2𝑠 . Register 𝑡 does not need updating

for event 𝑎 and is updated by 𝑡 ← 𝑡 + 𝑠 for event 𝑏. The symbol

currently under the read/write head is stored in finite memory.

Reading and writing on the tape is simulated asynchronously (at a

slower rate) as follows.

To simulate a move of the head to the left, we first write the

symbol under the read/write head as least significant bit in 𝑦 by

𝑦 ← 2𝑦 for symbol 𝑎 and 𝑦 ← 2𝑦 + 1 for symbol 𝑏. The encoding of

the pending part of the tape is updated by 𝑡 ← 2𝑡 and 𝑠 ← 2𝑠 . We

then read the least significant bit in 𝑥 . For this, we use register 𝑟

and 𝑧 to divide 𝑥 by 2 by through the updates 𝑧 ← 𝑧 + 1, 𝑟 ← 𝑟 + 2
until either 𝑟 = 𝑥 (remainder is 0) or 𝑟 = 𝑥 − 1 (remainder is 1). The

remainder is stored in finite memory as the new symbol under the

read/write head, and 𝑥 is updated by 𝑥 ← 𝑧.

To simulate a move of the head to the right, we proceed sym-

metrically but only after having updated 𝑦 with the pending part

of the tape stored in 𝑡 . For this, we use 𝑦 ← 𝑦 + 𝑡 , 𝑡 ← 0 and cancel

the update 𝑠 ← 2𝑠 at the next input event.

While moving the head by one position may cost an arbitrary

amount of registers operations, every simulated move will always

terminate in finite time. □

5.2 Adders versus Counters in Real Time
In real time, such a completeness result cannot hold due to the

existence of problems with time complexity more than exponential.

It is likely that every register in adder monitor increases their

expressive power. We found no proof of this, but obtained the

following separation result: in real time, 2 adders are not sufficient

to simulate 3 counters.

Example 5.6. We let Σ = {𝑎, #}, and consider the safety language

𝑁𝑘 =
⋃

𝑛1,...,𝑛𝑘 ∈N
#(𝑎𝑛1

# ∪ . . . ∪ 𝑎𝑛𝑘 #)𝜔 ∪ #(𝑎𝑛1
# ∪ . . . ∪ 𝑎𝑛𝑘 #)∗𝑎𝜔

consisting of sequences of strings of 𝑎, featuring at most 𝑘 unique

lengths. This language is similar to the language𝑀𝑘 of Example 5.4

but where finite words are over a unary alphabet.

Theorem 5.7. The language 𝑁2 can be recognized in real time by
a counter monitor with 3 registers but not by an adder monitor with
2 registers.

For the easy part of the theorem, we can construct a counter

monitor with registers {𝑥,𝑦, 𝑧} recognizing 𝑁2 as follows. We count

𝑛1 in 𝑥 if it exists, 𝑛2 ≠ 𝑛1 in 𝑦 if it exists, and any other sequence

of 𝑎’s in 𝑧. If upon occurrence of a separator, 𝑧 = 𝑥 or 𝑧 = 𝑦 then

reject.

For the hard part of the theorem, we let A be a real-time adder
monitor over the alphabet Σ = {𝑎, #} with 2 registers {𝑥,𝑦}, rate 𝑐 ,
and𝑚 control locations. We will use the following lemma. Given a

finite word𝑤 let us denote by 𝑥 (𝑤) and 𝑦 (𝑤) the values of 𝑥 and 𝑦

in A after reading𝑤 , respectively.

Lemma 5.8. Let 𝑛 be a positive integer and 𝑢,𝑢 ′ be words such that
𝑥 (𝑢) = 𝑦 (𝑢) > 2

𝑐𝑛 and 𝑥 (𝑢 ′) = 𝑦 (𝑢 ′) > 2
𝑐𝑛 , and A is in the same

location after reading 𝑢 or 𝑢 ′. For any word𝑤 with |𝑤 | ≤ 𝑛 we have
𝑢𝑤 is bad prefix for 𝐿(A) iff 𝑢 ′𝑤 is also bad prefix for 𝐿(A).
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Proof. Assume 𝑥 (𝑢) = 𝑦 (𝑢) = 𝑘 for some 𝑘 > 2
𝑐𝑛

and word

𝑢. Let us denote by 𝑞𝑖 the location of monitor A after reading

𝑢 and the first 𝑖 letters of 𝑤 . The value of registers 𝑥 and 𝑦 after

reading 𝑖 letters of𝑤 starting with initial value 𝑘 can be respectively

decomposed into 𝑒𝑖𝑘 + 𝑓𝑖 and 𝑔𝑖𝑘 +ℎ𝑖 for positive integers 𝑒𝑖 , 𝑔𝑖 and
0 ≤ 𝑓𝑖 < 2

𝑐𝑖
, 0 ≤ ℎ𝑖 < 2

𝑐𝑖
. This can easily be shown by induction

on 𝑖 . Every update of the form 𝑥 ← 𝑥 + 1 adds 1 to 𝑓𝑖 and every

update of the form 𝑥 ← 𝑥 + 𝑦 adds 𝑔𝑖 to 𝑒𝑖 and ℎ𝑖 to 𝑓𝑖 , similarly

for other forms of updates. In particular max{𝑔𝑖 , ℎ𝑖 } is multiplied

at most by 2 per update, and assuming rate 𝑐 , at most by 2
𝑐
per

transition.

Assume further 𝑥 (𝑢 ′) = 𝑦 (𝑢 ′) = 𝑘 ′ for some 𝑘 ′ > 2
𝑐𝑛

and

word 𝑢 ′ such that A is in location 𝑞0 after reading 𝑢
′
. We write

𝑒 ′
𝑖
, 𝑓 ′
𝑖
, 𝑔′

𝑖
, ℎ′

𝑖
the coefficients that occur in the decomposition of 𝑥 and

𝑦 after reading 𝑖 letters of𝑤 as previously, starting with alternative

register value 𝑥 = 𝑦 = 𝑘 ′. Let us also write 𝑞′
𝑖
the locations of A

after reading 𝑖 letters of 𝑤 , starting with register values 𝑘 ′. We

show by induction on 𝑖 that 𝑒 ′
𝑖
= 𝑒𝑖 , 𝑓𝑖 = 𝑓 ′

𝑖
, 𝑔𝑖 = 𝑔′

𝑖
, ℎ𝑖 = ℎ′

𝑖
,

and 𝑞𝑖 = 𝑞′
𝑖
. For 𝑖 = 0 the initial values of each coefficients are

the same. For 𝑖 ≥ 1, we demonstrated that |𝑓𝑖 | < 𝑘 and |𝑓 ′
𝑖
| < 𝑘 ′,

which gives us 𝑒𝑖−1𝑘 + 𝑓𝑖−1 = 𝑔𝑖−1𝑘 + ℎ𝑖−1 iff 𝑒𝑖−1 = 𝑔𝑖−1 and

𝑓𝑖−1 = ℎ𝑖−1. In turn this holds iff 𝑒𝑖−1𝑘 ′ + 𝑓𝑖−1 = 𝑔𝑖−1𝑘 ′ + ℎ𝑖−1, and
iff 𝑒 ′

𝑖−1𝑘
′ + 𝑓 ′

𝑖−1 = 𝑔
′
𝑖−1𝑘

′ +ℎ′
𝑖−1 by induction hypothesis. Therefore

any test 𝑎𝑥 + 𝑏𝑦 + 𝑑 = 0 with coefficients 𝑎, 𝑏, 𝑑 at most 2
𝑐
in

magnitude passes or fails identically starting from 𝑘 or from 𝑘 ′. By
induction hypothesis we also have 𝑞𝑖−1 = 𝑞′

𝑖−1 so that the same

updates are applied, yielding equal coefficients 𝑒𝑖 = 𝑒
′
𝑖
, . . . , ℎ𝑖 = ℎ

′
𝑖

and equal target locations 𝑞𝑖 = 𝑞
′
𝑖
.

We obtain that automatonA is in the same location after reading

𝑢𝑤 and 𝑢 ′𝑤 . Thus A errs on both words, or on neither. Since A
operates in real time, we have that 𝑢𝑤 is a bad prefix for 𝐿(A) iff
𝑢 ′𝑤 is also a bad prefix for 𝐿(A). □

Assume towards a contradiction that A recognizes 𝑁2. In addi-

tion to the lemma above, we also make use of the following facts.

Claim 1. For any 𝑙 ≥ 0, there are at most𝑚𝑙2 words𝑤 = #𝑢1#𝑢2
such that max{𝑥 (𝑤), 𝑦 (𝑤)} < 𝑙 .

Claim 2. For any word𝑤 = #𝑢#𝑣#𝑢 ∈ 𝐿(A) with 𝑢, 𝑣 ∈ 𝑎∗ such
that |𝑢 | > 𝑚 + 1, there exists 𝑢 ′, 𝑢 ′′ such that 𝑢 ′𝑢 ′′ = 𝑢, |𝑢 ′′ | ≤ 𝑚 + 1,
and 𝑥 (#𝑢#𝑣#𝑢 ′) = 𝑦 (#𝑢#𝑣#𝑢 ′).

We now have all the ingredients to proceed.

Proof of Theorem 5.7. Let us fix some positive integer 𝑛 such

that 𝑛 > 4(𝑚 + 1)2 and 𝑛2 > 2𝑐 (𝑛 +𝑚 + 2). We call unbalanced
any word of the form𝑤 = #𝑢#𝑣 such that 3 · 4𝑛2

< |𝑢 | ≤ 4
𝑛2+1

and

𝑛 < |𝑣 | ≤ 2𝑛, and max{𝑥 (𝑤), 𝑦 (𝑤)} ≥ 2
𝑛2

. There are 4
𝑛2

possible

words 𝑢 ∈ 𝑎∗ such that 3 · 4𝑛2

< |𝑢 | ≤ 4
𝑛2+1

, and 𝑛 possible words

𝑣 ∈ 𝑎∗ with 𝑛 < |𝑣 | ≤ 2𝑛. Following Claim 1, there are at least

𝑛4𝑛
2 − 2𝑛2

> 𝑛4𝑛
2−1

unbalanced words. Thus there exists a special

prefix 𝑢0 for which there are at least
𝑛
4
distinct words 𝑣 such that

#𝑢0#𝑣 is unbalanced. Following Claim 2, since |𝑢0 | > 𝑚+1 for every
such 𝑣 there exist𝑢 ′, 𝑢 ′′ such that𝑢0 = 𝑢

′𝑢 ′′ with |𝑢 ′′ | ≤ 𝑚+1, and
𝑥 (#𝑢0#𝑣#𝑢 ′) = 𝑦 (#𝑢0#𝑣#𝑢 ′). There are at least 𝑛

4
> (𝑚 + 1)2 words

𝑣 such that #𝑢0#𝑣 is unbalanced, and thus there exist two words

𝑣1 ≠ 𝑣2 associated with the same factorization 𝑢 ′𝑢 ′′ of 𝑢0, and such
thatA is in the same location after reading either𝑤1 = #𝑢0#𝑣1#𝑢

′
or

C
M

• 𝑁2

•𝑀2

•𝑀1

AM

.

.

.

3-AM

2-AM

1-AM

=

FSM

Figure 8: Separation of real-time adders. FSM, CM, and AM
stand for finite-state monitor, counter monitor, and real-
time adder monitor respectively.

𝑤2 = #𝑢0#𝑣2#𝑢
′
. But then by Lemma 5.8 since |#𝑢 ′′#𝑣1 | ≤ 2𝑛+𝑚+2

and 𝑥 (𝑤1) = 𝑦 (𝑤1), 𝑥 (𝑤2) = 𝑦 (𝑤2) are greater than or equal to

2
𝑛2

> 2
2𝑐 (𝑛+𝑚+2)

we have that𝑤1𝑢
′′
#𝑣1# is a bad prefix for 𝐿(A)

iff𝑤2𝑢
′′
#𝑣1# is also a bad prefix for 𝐿(A). By hypothesis A halts

in real-time and𝑤2𝑢
′′
#𝑣1# is a bad prefix for 𝑁2 while𝑤1𝑢

′′
#𝑣1 is

not. Thus 𝐿(A) ≠ 𝑁2. □

One can easily check that the proof of Theorem 5.7 carries over

to the language 𝑀2. Thus the inclusion of real-time 2-adder lan-

guages in real-time 3-adder languages is also proper in the subset

of languages not counter recognizable. A summary of the results

of the last two subsections appears in Figure 8.

5.3 Adder Variants
We observe that providing adder monitors with a subtraction op-

eration and replacing an equality test by a test for zero does not

affect their expressive power.

Theorem 5.9. Register monitors with instruction set ⟨1, +,=⟩ and
with instruction set ⟨1, +,−,=0⟩ are equally expressive.

Moreover, simulations underlying the above theorem are real-

time.

Let us now investigate the effect of copy updates in adders. Take

𝑋 to be a set of registers. Following [3], an update ` over𝑋 is said to

be copyless if every variable 𝑦 appears at most once in

∑
𝑥 ∈𝑋 ` (𝑥).

An adder monitor is copyless if every one of its updates is.

Surprisingly we show that in copyless monitors, adders are not

more expressive than counters. Here we assume that addermonitors

are equipped with a reset operation, that is, the instruction set we

consider is ⟨0, 1, +,=⟩, otherwise the statement is trivial.

Theorem 5.10. Any copyless reset-adder monitor with 𝑘 registers
can be simulated in real time by a counter monitor with 2

𝑘 registers.

Proof. LetA be an arbitrary copyless reset-adder monitor, and

let 𝑋 be its set of registers. We construct an equivalent counter

monitor A ′ as follows. Registers of A ′ are taken in the set 𝑅 =

{𝑟𝑌 | 𝑌 ⊆ 𝑋 }. By definition, the sum of any subset of the right-

hand sides of a copyless update does not feature duplicated variables

either. Therefore we can maintain each variable 𝑟𝑌 of A ′, storing∑
𝑦∈𝑌 𝑟𝑦 , by using updates of the form 𝑟𝑌 ← 𝑟𝑍 + 𝑎. Tests in A ′

are obtained form those in A by replacing every 𝑥 ∈ 𝑋 by 𝑟𝑥 . □
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6 BEYOND ADDERS
We now consider general arithmetic register instructions.

Definition 6.1. We call linear a register monitor with the instruc-

tion set ⟨0, 1, +,−, ≥⟩ and we call polynomial a register monitor with

the instruction set ⟨0, 1, +,−,×, ≥⟩.

The expressive power of real-time linear register monitors is

related to that of real-time, multi-tape Turing machines. A formal

definition of this model is given in [35]. The safety 𝜔-language of

a Turing machine is the set of 𝜔-words on which it does not halt.

A Turing machine is said to be real-time when it errs on the set of

bad prefixes for its safety language. It is easy to see that 2 linear

registers can emulate a push-down store, using comparisons 𝑥 ≥ 𝑦
to probe the most significant bit of a register 𝑥 and 𝑥 ← 𝑥 + 𝑦,
𝑥 ← 𝑥 −𝑦 to write it when 𝑦 stores 2

𝑛
and 𝑥 has length 𝑛. Dividing

𝑦 by 2 is equivalent to multiplying 𝑥 by 2. Thus:

Theorem 6.2. Linear register monitors with 4𝑘 registers can sim-
ulate Turing machines with 𝑘 work tapes in real time for all 𝑘 ≥ 0.

Since Turing machines with one work tape can simulate any

number of counters in real time [37], we have:

Corollary 6.3. Any counter monitor can be simulated by a linear
register monitor with 4 registers in real time.

In spite of their ability to multiply, polynomial register monitors

still have limited expressive power in real time.

Example 6.4. Let Σ = {𝑎, 𝑏}, and Σ′ = Σ ∪ {#}. We consider the

following language 𝐻 , defined as

𝐻 = #Σ′𝜔 \
⋃
𝑤∈Σ∗
(#Σ∗)∗#𝑤 (#Σ∗)∗#𝑤#Σ′𝜔 .

When finite words over Σ represent numbers in binary notation and

# separates words into numbers, language 𝐻 represents sequences

in which no number repeats.

We obtain the following result, analogous to the one of [20] for

the model of real-time Turing machines.

Theorem 6.5. The language 𝐻 cannot be monitored by real-time
polynomial register monitors.

We will use the following characterization of the number of cells

in semialgebraic decompositions due to [32]:

Lemma 6.6. Given a set of polynomials 𝑃 = {𝑝1, . . . , 𝑝𝑠 } in vari-
ables 𝑥1, . . . , 𝑥𝑘 where each polynomial has degree at most 𝑑 , the
number of cells in the partition of R𝑘 by 𝑃 is 𝑂 ((𝑠𝑑/𝑘)𝑘 ).

Proof of Theorem 6.5. Assume towards a contradiction the ex-

istence of a real-time polynomial register monitor A such that

𝐿(A) = 𝐻 . Let𝑚,𝑘, 𝑐 respectively stand for the number of states,

number of registers, and rate of A. We examine configurations

of A after reading a prefix of the form #𝑢#𝑤# where 𝑢 ∈ Σ′∗ and
𝑤 ∈ Σ𝑛 for fixed length 𝑛. Since the prefix #𝑢 is arbitrarily long,

it can feature any subset of words of length 𝑛. While processing

𝑤#, the monitor must discriminate between 2
2
𝑛
subsets of words of

length 𝑛. During this subword, A performs 𝑛 + 1 updates and tests.

This is equivalent to testing the values of registers for inequalities

with terms of size 𝑐 (𝑛 + 2). These terms are polynomials with 𝑘

variables of degree 𝑐𝑛. Let us denote by 𝑃 this family of polynomi-

als. We have |𝑃 | < (𝑘 + 4)𝑐 (𝑛+2) by enumeration of their possible

syntactic trees. Tests 𝑝 ≥ 0 for 𝑝 ∈ 𝑃 form a partition over Z𝑘 into

finitely many cells, in which the sign of every polynomial in 𝑃 is

constant. By application of Lemma 6.6 we obtain that the number of

nonempty cells defined by 𝑃 is𝑂 (((𝑘 + 4)𝑐 (𝑛+2)𝑐 (𝑛 + 2)/𝑘)𝑘 ). After
reading a prefix #𝑢#, monitor A is in one of𝑚 locations. Through-

out the suffix 𝑤#, possible register valuations 𝑣 and 𝑣 ′ cannot be
distinguished when they lie in the same cell. Hence for large 𝑛 the

numbers of inequivalent configurations of A is 2
𝑂 (𝑛 log𝑛)

. This

does not suffice to discriminate between 2
2
𝑛
equivalence classes of

prefixes of 𝐻 . Thus A does not recognize bad prefixes for 𝐻 . □

We remark that however if numbers are presented in unary, then

the corresponding language can be recognized in real time.

Example 6.7. Let Σ′ = {𝑎, #}. We now consider language

𝐾 = #Σ′𝜔 \
⋃
𝑛∈N
(#𝑎∗)∗#𝑎𝑛 (#𝑎∗)∗#𝑎𝑛#Σ′𝜔

of words in which no number, given in unary notation, repeats.

Theorem 6.8. The language 𝐾 can be recognized by a linear reg-
ister monitor in real time.

Proof. We encode a set of numbers {𝑛1, . . . , 𝑛𝑘 } into the value

2
𝑛1 + . . .+2𝑛𝑘 . It is straightforward to maintain this encoding in real-

time using a single-tape Turing machine with a special instruction

making the read/write head jump back to the first position. A minor

adaptation of Theorem 6.2 give us that the language 𝐾 is also

recognizable by a linear register monitor in real time. □

We do not know whether 𝑘 + 1 registers are more powerful than

𝑘 registers in real-time polynomial monitors. An instruction set in

which the hierarchy collapses is ⟨0, 1, +,×, 𝑒, 𝑓 , ≥⟩ where 𝑒 and 𝑓 are
binary functions such that 𝑒 (𝑖, 𝑗) = 𝑖 𝑗 , and 𝑓 (𝑖, 𝑗) is the multiplicity

of factor 𝑗 in the prime decomposition of 𝑖 . With this instruction

set, any monitor with 𝑘 registers can be simulated in real time by a

monitor with 1 register.

7 CONCLUSION
We propose register monitors as a computational model for the

run-time monitoring of reactive systems. The basic monitoring

problem asks for recognizing a safety 𝜔-language in real time.

While previous approaches put emphasis on the subclass of 𝜔-

regular languages, we see no reason to restrict monitors, which are

usually implemented in software, to finite-state. Looking beyond

finite-state, we uncovered an expressiveness hierarchy for register

monitors depending on the number of available registers and arith-

metic capabilities. This hierarchy is significantly more nuanced

than the computability hierarchy, which does not restrict register

machines to a single pass over an input word, nor to a bounded

number of steps between consecutive inputs.

There are several directions in which this work needs to be

extended. First, while our monitors can only reject an input word,

quantitative monitors may output values, such as the maximal or

average response time seen so far [5]. Quantitative monitors have

several advantages: they can be used to over- or underapproximate

the desired quantity, and thus, they can be compared according to a
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resource-precision trade-off. Similarly to the qualitative monitoring

we studied, we expect quantitative and approximate monitoring

with arithmetic registers to exhibit a rich theory beyond the finite-

state/𝜔-regular case.

Second, monitors for the same language can be compared as to

how “quickly” they reject a violating input word. There is a trade-

off between the resources (registers and operations) available to

a monitor and its efficiency (delayed rejection), which is closely

related to the time and space requirements of on-line computation.

Third, we left several interesting problems open, perhaps most

notably the question whether adder monitors exhibit the same strict

register hierarchy as counter monitors; we were able to show that

3 adders are more powerful than 2 adders, but the general problem

is still open in the real-time case. In particular, the information-

theoretic arguments that have been used for real-time Turing ma-

chines do not directly apply.

Fourth, a logical next step beyond monitoring is enforcement.
In enforcement [12] (or “shielding” [23]), the monitor can, in real

time, make changes to the observed input sequence in order to

repair property violations. Once again, the topic of finite-state

enforcement has received much attention, but to the best of our

knowledge the power of enforcement with registers has not yet

been studied.
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A APPENDIX: OMITTED PROOFS
In this appendix, we produce all proofs that were omitted in the

body of the text. They appear here in the order with which the

results were stated.

In Section 2
Proof of Theorem 2.2. Let A1 = (Σ, 𝑋1, 𝑄1, 𝑠1,Δ1) and A2 =

(Σ, 𝑋2, 𝑄2, 𝑠2,Δ2) with disjoint sets of locations and of registers.

We construct the product A∩ = (Σ, 𝑋,𝑄∩, 𝑠,Δ∩) of A1 by A2 as

follows. Let 𝑋 = 𝑋1 ∪ 𝑋2, 𝑄∩ = 𝑄1 × 𝑄2, and 𝑠 = (𝑠1, 𝑠2). The
set Δ∩ consists of edges ((𝑞1, 𝑞2), 𝜎, 𝜙1 ∧ 𝜙2, `1∥`2, (𝑞′

1
, 𝑞′

2
)) for

every pair of edges (𝑞𝑖 , 𝜎, 𝜙𝑖 , `𝑖 , 𝑞′𝑖 ) in Δ𝑖 , 𝑖 = 1, 2. We construct

the product A∪ = (Σ, 𝑋,𝑄∪, 𝑠,Δ∪) of A1 by A2 as follows. Let

𝑋 = 𝑋1 ∪𝑋2,𝑄∪ = 𝑄1 ∪𝑄2 ∪𝑄1 ×𝑄2, and 𝑠 = (𝑠1, 𝑠2). The set Δ∪
contains edges in Δ1, Δ2 and Δ∩ as previously and those of the form
((𝑞1, 𝑞2), 𝜎, 𝜙1 ∧ ¬𝜙2, `1, 𝑞′

1
) and ((𝑞1, 𝑞2), 𝜎,¬𝜙1 ∧ 𝜙2, `2, 𝑞′

2
). □

Proof of Theorem 2.5. LetA be an 𝜖-monitor with delay 𝑐 for

some 𝑐 ∈ N. Any pair of edges in A of the form (𝑞, 𝜖, 𝜙,𝛾, 𝑟 ) and
(𝑟, 𝜎, 𝜙 ′, 𝛾 ′, 𝑠) can be replaced by a single edge (𝑞, 𝜎, 𝜙∧𝜙 ′[𝛾], 𝛾 ′[𝛾], 𝑠)
where 𝜙 ′[𝛾] and 𝛾 ′[𝛾] denote the test and update obtained from 𝜙 ′

and 𝛾 ′ by replacing variables in 𝑋 with their image by 𝛾 . We apply

this rule in order to construct all edges associated to some path 𝜖𝑘𝜎

for 𝑘 ≤ 𝑐 . Any run containing transitions labeled 𝜖 can be replaced

by a path containing transitions with labels in Σ. After removing

edges with labels not in Σ, we obtain an equivalent monitor with

rate 𝑐 + 1.
In the other direction, we can split edges featuring terms or

atomic formulas of size greater than 1 into pair of edges (𝑞, 𝜖, 𝜙,𝛾, 𝑟 )
and (𝑟, 𝜎, 𝜙 ′, 𝛾 ′, 𝑟 ) using a fresh location 𝑟 . Any update featuring

terms of size 𝑛 ≥ 1 can be decomposed into ` [` ′] where ` has

terms of size at most 1, and ` ′ has terms of size at most 𝑛 − 1. This
is done by introducing auxiliary registers 𝑥 ′

1
, . . . , 𝑥 ′

𝑘
. For any 𝑥𝑖

such that ` (𝑥𝑖 ) is of the form 𝑓 (𝑡) for function 𝑓 and term 𝑡 , we

let ` (𝑥𝑖 ) = 𝑓 (𝑥 ′
𝑖
) and ` ′(𝑥 ′

𝑖
) = 𝑡 . We proceed similarly for tests.

This process is iterated until no new edges are found, and will

terminate since at every step the size of the terms is reduced by

one. Removing edges with terms or atomic formulas of size greater

than 1, we obtain the desired 𝜖-monitor. □

In Section 4
Proof of Theorem 4.5. Assume without loss of generality that

all register monitors have rate 𝑐 = 1 thanks to Theorem 4.4. We

show that one test can simulate the other by either using an ex-

pression that is logically equivalent, or using finite state memory

to remember how registers relate to each other. For the easy part it

suffices to observe that 𝑥=𝑦 iff 𝑥 ≥ 𝑦 ∧ 𝑦 ≥ 𝑥 .
For the other direction we observe the behaviors of registers and

store the information which is not provided by the test = using

additional control locations. More specifically, for every distinct

pair of registers we use a 3-valued label associated with locations,

denoting how the corresponding pair of registers is related. Let

𝑆 = {−1, 0, 1} denote the relations where −1 corresponds to 𝑥 < 𝑦, 0

to 𝑥=𝑦, and 1 to 𝑥 > 𝑦. If the current location has the label 0 for the

pair (𝑥,𝑦), we check the updates to decide on the label of the next

location, e.g., incrementing 𝑥 results in a transition to a location

with label 1 for the corresponding pair. If the location is labeled

with −1 or 1 for (𝑥,𝑦), we test for 𝑥=𝑦 at every input symbol, and

stay at the locations implying the same relation as long as the test

is false. If it becomes true, we take the transition to the location

labeled with 0 for the pair, and repeat the process by enabling the

inequality test by 3-valued labels. □

Proof of Theorem 4.6. Given 𝑎, 𝑏 ∈ N and some term 𝑡 , we use

𝑡 + 𝑎 as a shorthand for 𝑡 + 1 + . . . + 1 (𝑎 times), and symmetrically

for 𝑡 − 𝑏. Let us informally refer to registers with instruction set

⟨−1, +1,=0⟩ as signed counters, and to registers with instruction

set ⟨+1,=⟩ as unsigned counters.

A signed counter 𝑥 can be replaced by two unsigned coun-

ters 𝑥+, 𝑥− respectively storing the number of increments and

decrements. An update 𝑥 ← 𝑦 + 𝑎 − 𝑏 is implemented by 𝑥+ ←
𝑦+ + 𝑎, 𝑥− ← 𝑦− + 𝑏. An update 𝑥 ← 𝑎 − 𝑏 is implemented by

𝑥+ ← 𝑥− + 𝑎, 𝑥− ← 𝑥+ + 𝑏. A test 𝑥 + 𝑎 − 𝑏 = 0 is achieved by

testing for 𝑥+ + 𝑏 = 𝑥− + 𝑎. Tests and updates can always be put in

this form.

In the other direction, every pair of two unsigned counters 𝑥,𝑦

is replaced by a signed counter 𝑟𝑥−𝑦 storing their difference. A pair

of updates 𝑥 ← 𝑥 ′ + 𝑎,𝑦 ← 𝑦′ +𝑏 is emulated with update 𝑟𝑥−𝑦 ←
𝑟𝑥 ′−𝑦′ + 𝑎 − 𝑏. Then 𝑥 + 𝑎 = 𝑦 + 𝑏 if and only if 𝑟𝑥−𝑦 + (𝑎 − 𝑏) = 0.

The transformed monitor halts iff the original one does. □

Proof of Theorem 4.8. Let us denote by 𝑆 the set of bad pre-

fixes for 𝐿′
1
. Let A satisfy (𝑞0, 𝑣0)

𝑎𝑛−−→ (𝑞1, 𝑣1) and (𝑞0, 𝑣0)
𝑎𝑚−−−→

(𝑞2, 𝑣2). Consider the strings 𝑢1 = 𝑎𝑛𝑏𝑛 and 𝑢2 = 𝑎𝑚𝑏𝑛 such that

(𝑞0, 𝑣0)
𝑢1−−→ (𝑞′

1
, 𝑣 ′

1
) and (𝑞0, 𝑣0)

𝑢2−−→ (𝑞′
2
, 𝑣 ′

2
). Clearly, if𝑚 < 𝑛 then

𝑢1 ∉ 𝑆 whereas 𝑢2 ∈ 𝑆 . Assume that (𝑞1, 𝑣1) = (𝑞2, 𝑣2), that is,
runs over 𝑎𝑛 and 𝑎𝑚 result in the same configuration. Then, since

(𝑞1, 𝑣1)
𝑏𝑛−−→ (𝑞′

1
, 𝑣 ′

1
) and (𝑞2, 𝑣2)

𝑏𝑛−−→ (𝑞′
2
, 𝑣 ′

2
) and A is determinis-

tic, (𝑞′
1
, 𝑣 ′

1
) = (𝑞′

2
, 𝑣 ′

2
). It implies that 𝑢1 ∈ 𝑆 if and only if 𝑢2 ∈ 𝑆 .

However, if𝑚 < 𝑛 then 𝑢2 ∈ 𝑆 , hence we cannot have 𝑣1 = 𝑣2 for
such𝑚 and 𝑛.

In other words, two strings of 𝑎’s of different lengths cannot

produce the same configuration of register values. Hence, we can

always find a string of consecutive 𝑎’s of length at most 1 more

than the boundedly many number of configurations, 𝑞(2𝑐𝑑 + 1)𝑘 +
1, such that at least one of the 𝑘 registers goes out of the range

[−𝑐𝑑, 𝑐𝑑]. □

Proof of Theorem 4.11. The idea is to apply a translationwhich

is almost identical to that of Theorem 4.6 in two steps, in order to

reach from monitors with instructions in ⟨+1,=⟩, copyless moni-

tors with instructions in ⟨0, +1,=⟩. We use copyless monitors with

instructions in ⟨0,−1, +1,=0⟩ as an intermediary stage in this trans-

lation. By Theorem 4.4, we assume without loss of generality that

all register monitors have rate 1.

Assume a register monitor with instruction set ⟨+1,=⟩. We con-

struct a copyless register monitor with instructions in ⟨0,−1, +1,=0⟩
by storing andmaintaining the difference between variables in pairs,

as described in the proof of Theorem 4.6. Notice that whenever a

copy occurs, it is replaced by a reset. Formally, a pair of updates

𝑥 ← 𝑧 + 𝑎,𝑦 ← 𝑧 + 𝑏 is simulated by 𝑟𝑥−𝑦 ← 𝑎 − 𝑏. The rest of the
construction is as previously. For the next step we go from copyless

monitors with instructions ⟨0,−1, +1,=0⟩ to copyless monitors with

instructions ⟨0, +1 =⟩. We use the other direction of the translation
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in Theorem 4.6, in which we additionally simulate each reset 𝑥 ← 𝑎

by 𝑥+ ← 𝑎, 𝑥− ← 0 if 𝑎 ≥ 0, 𝑥+ ← 0, 𝑥− ← −𝑎 otherwise. □

In Section 5
Proof of Theorem 5.3. We show that the language 𝑀1 is not

recognizable by any counter monitor. Assume towards a contra-

diction the existence of a counter monitor A with 𝑘 registers,𝑚

locations, and rate 𝑐 recognizing language𝑀1. The set 𝑆𝑤 of inequiv-

alent prefixes of length 𝑛 and the set 𝑆𝑐 of possible configurations

after 𝑛 steps are given as follows:

𝑆𝑤 = {𝑤 | 𝑤 ∈ Σ𝑛} and 𝑆𝑐 = {(𝑞, 𝑣) | 𝑤 ∈ 𝑆𝑤 ∧ (𝑞0, 𝑣0)
𝑤−→ (𝑞, 𝑣)}.

Note that |𝑆𝑤 | = 2
𝑛
and |𝑆𝑐 | = 𝑚(𝑐𝑛)𝑘 . Since 2

𝑛 > 𝑚(𝑐𝑛)𝑘 for

some sufficiently large 𝑛, it is clear that there exist some strings

𝑤1 ≠ 𝑤2 in 𝑆𝑤 resulting in the same configuration. In this case, the

monitorA behaves the same on (𝑤1#)𝜔 and on𝑤2#(𝑤1#)𝜔 , which
contradicts the definition of 𝑀1. Hence, such a counter monitor

cannot exist. □

Proof of Claim 1. Since registers only have non-negative inte-

ger values, if there were more than𝑚𝑙2 such words then by pigeon-

hole principle there would exist two words𝑤 ≠ 𝑤 ′ satisfying the
above condition and such that 𝑥 (𝑤) = 𝑥 (𝑤 ′), 𝑦 (𝑤) = 𝑦 (𝑤 ′), and
A in the same location after reading either𝑤 or𝑤 ′. But then𝑤#𝑤

and𝑤 ′#𝑤 are indistinguishable by A, which contradicts the fact

that𝑤 ′#𝑤 is bad for 𝑁2, while𝑤#𝑤 isn’t. □

Proof of Claim 2. Assume 𝑥 (#𝑢#𝑣#𝑢 ′) ≠ 𝑦 (#𝑢#𝑣#𝑢 ′) holds for
all factorizations 𝑢 ′𝑢 ′′ = 𝑢 ∈ 𝑎∗ with |𝑢 ′′ | ≤ 𝑚 + 1, in search of a

contradiction. Then, we have in particular 𝑥 (#𝑢#𝑣#𝑢) ≠ 𝑦 (#𝑢#𝑣#𝑢),
and 𝑥 (#𝑢#𝑣#𝑢2) ≠ 𝑦 (#𝑢#𝑣#𝑢2) for at least one 𝑢2 ∈ Σ∗ with 𝑢2 ≠ 𝑢

such thatA is in the same location reading #𝑢#𝑣#𝑢 as after reading

#𝑢#𝑣#𝑢2. But then A either errs on both #𝑢#𝑣#𝑢# and #𝑢#𝑣#𝑢2,

or on neither. This contradicts the fact that A recognizes 𝑁2 in

real-time. □

Proof of Theorem 5.9. Let us call signed adder monitor a regis-

ter monitor with instruction set ⟨0, 1, +,−,=0⟩, and unsigned adder

monitor as previously.

A signed adder 𝑥 can be simulated by two unsigned adders

𝑥−, 𝑥+ similarly as previously. Updates 𝑥 ← _ where _ is a linear

combination of variables are simulated with 𝑥+ ← _+ and 𝑥− ← _−,
where _ ≡ _+ − _− and _+, _− only have positive coefficients. Tests

of the form _ = 0 are equivalent to _+ = _−.
Updates in an unsigned adder are a special case of those in a

signed one. Tests _1 = _2 are naturally emulated as _1 −_2 = 0. □

In Section 6
Proof of Theorem 6.2. Every tape-head unit 𝑡 can be encoded

using six adder registers as follows. First, the tape is divided between

the parts lying at the right and left of its head. Each of these parts is

essentially a push-down store, that we maintain as follows. We use

some register 𝑥 storing the content of the store in binary notation,

paddedwith𝑚 zeros. Auxiliary registers𝑦 and 𝑧 are used to read and

write into the store, and hold 2
𝑚

and 2
𝑚 − 1 respectively. To push

a symbol 𝑎 on the stack we update 𝑦, 𝑧 with 𝑦 ← 2𝑦, 𝑧 ← 𝑧 + 𝑦. To
push a symbol 𝑏 on the stack we update 𝑥,𝑦, 𝑧 with 𝑥 ← 𝑥 +2𝑦,𝑦 ←
2𝑦, 𝑧 ← 𝑧 +𝑦. To pop a symbol form the stack we must first read it,

and then erase it. Reading is done by using inequality 𝑥 ≤ 𝑧, which
holds if and only if the symbol 𝑎 is at the top of the stack. Erasing

is done by 𝑥 ← 𝑥 −𝑦 if 𝑏 is at the top of the stack, nothing if 𝑎 is at

the top stack, and padding 𝑥 with one more zero, via 𝑥 ← 2𝑥 . □
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