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Abstract
The operator precedence languages (OPLs) represent the largest known subclass of the context-
free languages which enjoys all desirable closure and decidability properties. This includes the
decidability of language inclusion, which is the ultimate verification problem. Operator precedence
grammars, automata, and logics have been investigated and used, for example, to verify programs
with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside
the scope of the visibly pushdown languages). In this paper, we complete the picture and give,
for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic
congruence that has finitely many equivalence classes exactly for the operator precedence languages.
This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs.
As one of the consequences, we show that universality and language inclusion for nondeterministic
operator precedence automata can be solved by an antichain algorithm. Antichain algorithms
avoid determinization and complementation through an explicit subset construction, by leveraging
a quasi-order on words, which allows the pruning of the search space for counterexample words
without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these
implementations are today the best-performing algorithms in practice for the inclusion of finite
automata. We give a generic construction of the quasi-order needed for antichain algorithms from a
finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that
solves the ExpTime-hard language inclusion problem for OPLs in exponential time.
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1 Introduction

Pushdown automata are a fundamental model of computation and the preferred formalism
to parse programs in a deterministic manner. In verification, they are used to encode the
behaviors of both systems and specifications that involve, for example, nested procedure calls.
However, unlike for regular languages specified by finite automata, the inclusion of context-
free languages given by pushdown automata is undecidable, even for deterministic machines.
This is why expressive subclasses of context-free languages with decidable properties have
been studied in the past decades. Prominent among those formalisms is the class of visibly
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pushdown languages [3], which is strictly contained in the deterministic context-free languages.
A visibly pushdown language (VPL) is a context-free language where each word admits a
single parse tree, which does not depend on the pushdown automaton that generates (or
accepts) the word. More technically, visibly pushdown automata (VPDAs) extend finite
automata with a memory stack that is restricted to “push” and “pop” operations on disjoint
subsets of the input alphabet. VPDAs have become popular in verification for several reasons.
First, they recognize “well-nested” words, which find applications in the analysis of HTML
and XML documents. Second, their restricted stack behavior enables desirable closure and
decidability properties; in particular, in contrast to deterministic context-free languages,
VPDAs can be complemented and their inclusion is decidable. Third, the VPLs admit a
generalization of the celebrated Myhill-Nerode theorem for the regular languages [2]: they can
be characterized algebraically by a finite syntactic congruence, which not only explains the
decidability results, but also leads to symbolic verification algorithms, such as antichain-based
universality and inclusion checking for VPDAs [11].

There are, however, important languages that are parsable by deterministic pushdown
automata, yet are not visibly pushdown. An important example are the arithmetic expressions
with two binary operators, addition and multiplication, where multiplication takes precedence
over addition. Most programming languages allow such expressions with implicit precedence
relations between operators, instead of insisting on explicit parantheses to disambiguate. For
this very purpose, Floyd introduced three elementary precedence relations between letters,
namely, equals in precedence =̇, yields precedence l, and takes precedence m, which provide
structure to words. He introduced the operator precedence languages (OPLs), a subclass
of the context-free languages, where non-conflicting precedence relations between letters
can be derived from the context-free grammar [33]. The ability to extract non-conflicting
relations from the grammar provides a unique parse tree for each word. However, unlike for
VPLs, a letter is not assigned to a unique stack operation, but will trigger “push” and “pop”
operations depending on its precedence with respect to the adjacent letters. This allows
OPLs to model not only arithmetic expressions, but also languages with exception handling
capabilities, where a single closed parenthesis may close several open parentheses [1, 48].

The class of OPLs lies strictly between the VPLs and the deterministic context-free
languages. Despite their extra expressive power, the OPLs enjoy the closure and decidability
properties of the VPLs, and they even do so at the same cost in computational complexity:
the class of OPLs is closed under all boolean and regular operations (union, intersection,
complement, concatenation, reverse, and Kleene star) [20, 21]; their emptiness can be solved
in PTime (it is PTime-hard for VPDAs), and universality and inclusion in ExpTime (they
are ExpTime-hard for VPDAs) [43]. Moreover, OPLs admit a logical characterization in
terms of a monadic second-order theory over words, as well as an operational characterization
in terms of automata with a stack (called OPAs) [43]. In short, OPLs offer many of the
benefits of the VPLs at no extra cost.

In this paper, we complete the picture by showing that OPLs also offer an algebraic charac-
terization in form of a generalized Myhill-Nerode theorem. Specifically, we define a syntactic
congruence relation ≡L for languages L such that ≡L has finitely many equivalence classes
if and only if L is an OPL. Finite syntactic congruences provide a formalism-independent
(i.e., grammar- and automaton-independent) definition for capturing the algebraic essence of
a class of languages. In addition to the regular languages (Myhill-Nerode) and the VPLs,
such congruences have been given also for tree languages [37], for profinite languages [47],
for omega-regular languages [4, 44], for sequential and rational transducers [15, 30]. Further-
more, such characterization results through syntactic congruences have been used to design
determinization [2, 38], minimization [34, 41], and learning [12, 41, 46] algorithms.
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Our contribution in this paper is twofold. Besides giving a finite congruence-based
characterization of OPLs, we show how such a characterization can be used to obtain
antichain-based verification algorithms, i.e., symbolic algorithms for checking the universality
and inclusion of operator precedence automata (OPA). Checking language inclusion is the
paradigmatic verification problem for any automaton-based specification formalism, but
it is also computationally difficult: PSpace-hard for finite automata, ExpTime-hard for
VPDAs, undecidable for pushdown automata. This is why the verification community has
devised and implemented symbolic algorithms, which avoid explicit subset constructions for
determinization and complementation by manipulating symbolic representations of sets of
states. For finite automata, the antichain-based algorithms have proven to be particularly
efficient in practice: DWINA [29] outperforms MONA [40] for deciding WS1S formulae,
ATC4VPA [11] outperforms VPAchecker [50] for deciding VPDAs inclusion, and Acacia [31]
outperforms Lily [39] for LTL synthesis. They leverage a quasi-order on words to prune the
search for counterexamples. Intuitively, whenever two words are candidates to contradict
the inclusion between two given languages, and the words are related by the quasi-order at
hand, the “greater” word can be discarded without compromising the completeness of the
search. During symbolic fixpoint iteration, this “quasi-order reduction” yields a succinct
representation of intermediate state sets. Based on our syntactic congurence, we show how
to systematically compute a quasi-order that enables the antichain approach. Then, we
provide the first antichain algorithm for checking language inclusion (and as a special case,
universality) between OPAs. In fact, our antichain inclusion algorithm can take any suitable
syntactic congruence over structured words (more precisely, any finite equivalence relation
that is monotonic for structured words and saturates its language). The instantiation of
the antichain algorithm with our syntactic congruence yields an ExpTime algorithm for the
inclusion of OPAs, which is optimal in terms of enumeration complexity.

In summary, we generalize two of the most appealing features of the regular languages—the
finite characterization by a syntactic congruence, and the antichain inclusion algorithm—to
the important context-free subclass of operator precedence languages.

Overview. In Section 2, we define operator precedence alphabets and structured words. We
present operator precedence grammars as originally defined by Floyd. We then define the
operator precedence languages (OPLs) together with their automaton model (OPAs). Finally,
we summarize the known closure and complexity results for OPLs and OPAs. In Section 3,
we introduce the syntactic congruence that characterizes the class of OPLs. Subsection 3.1
proves that the syntactic congruence of every OPLs has finitely many equivalence classes,
and Subsection 3.2 proves that every language whose syntactic congruence has finitely many
equivalence classes is an OPL. In Section 4, we present our antichain inclusion algorithm.
First, we introduce the notion of a language abstraction and prove that our syntactic
congruence is a language abstraction of OPLs. We also present a quasi-order that relaxes
the syntactic congruence while preserving the property of being a language abstraction.
Then, we provide an antichain algorithm that decides the inclusion between automata whose
languages have finite abstractions. We prove the correctness of our algorithm and establish
its complexity on OPAs. In Section 5, we conclude with future directions.

Related Work. Operator precedence grammars and their languages were introduced by
Floyd [33] with the motivation to construct efficient parsers. Inspired by Floyd’s work,
Wirth and Weber [51] defined simple precedence grammars as the basis of an ALGOL-like
language. The relation between these two models was studied in [32]. The properties of OPLs
were studied in [17, 21]. Later, their relation with the class of VPLs was established in [20],
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their parallel parsing was explored in [5], and automata-theoretic and logical characterizations
were provided in [43]. Recent contributions provide a model-checking algorithm for operator
precedence automata [14], a generalization to a weighted model [27], and their application to
verifying procedural programs with exceptions [48].

The OPLs form a class of structured context-free languages [45] that sits strictly between
deterministic context-free languages and the VPLs [3, 19]. To the best of our knowledge,
the OPLs constitute the largest known class that enjoys all desired closure and decidability
properties. Several attempts have been made to move beyond this class, however, this often
comes at the cost of losing some desirable property. For example, the locally chain-parsable
languages are not closed under concatenation and Kleene star [18], and the higher-order
OPLs with fixed order are not closed under concatenation [22]. Despite the fact that they are
more powerful than the VPLs and enjoy all closure and decidability properties, the class of
OPLs is not nearly as well studied. In particular, a finite syntactic congruence characterizing
the VPLs was provided in [2]. An analogous result was missing for the OPLs until now.

The antichain algorithm for checking language inclusion was originally introduced for
finite automata [52] and later extended to alternating finite automata [53]. The approach
has been adapted to solve games with imperfect information [13], the inclusion of tree
automata [8], the realizability of linear temporal logic [31], the satisfiability of quantified
boolean formulas [9], the inclusion of visibly pushdown automata [11], the inclusion of
ω-visibly pushdown automata [24], the satisfiability of weak monadic second-order logic [28],
and the inclusion of Büchi automata [25, 26]. The antichain-based approach can be expressed
as a complete abstract interpretation as it is captured by the framework introduced in [35, 36].
We provide the first antichain inclusion algorithm for OPLs, and the first generic method to
construct an antichain algorithm from a finite syntactic congruence.

2 Operator Precedence Languages

We assume that the reader is familiar with formal language theory.

2.1 Operator Precedence Relations and Structured Words
Let Σ be a finite alphabet. We refer by Σ∗ to the set of all words over Σ, by ε to the empty
word, and we let Σ+ = Σ∗ \ {ε}. Given a word w ∈ Σ∗, we denote by |w| its length, by w/

its first letter, and by w. its last letter. In particular |ε| = 0, ε/ = ε, and ε. = ε.
An operator precedence alphabet Σ̂ is an alphabet Σ equipped with the precedence relations

l, m, =̇, given by a matrix (see Figure 1). Formally, for each ordered pair of letters (a, b) ∈ Σ2,
exactly one1 of the following holds:

a yields precedence to b, denoted a l b,
a takes precedence over b, denoted a m b,
a equals in precedence with b, denoted a =̇ b.

For a, b ∈ Σ, we write a ≥m b iff a m b or a =̇ b, and similarly a ≤l b iff a l b or a =̇ b. It is
worth emphasizing that, despite their appearance, the operator precedence relations l,≤l, m,
≥m and =̇ are in general neither reflexive nor transitive. We extend the precedence relations
with ε such that ε l a, a m ε, and ε =̇ ε for all a ∈ Σ.

1 In the literature, operator precedence matrices are defined over sets of precedence relations, leading then
to notion of precedence conflict. We use the restriction to singletons because it covers the interesting
part of the theory.
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+ × 0 1 (| |) ε
+ m l l l l m m
× m m l l l m m
0 m m · · · m m
1 m m · · · m m
(| l l l l l =̇ m
|) m m · · · m m
ε l l l l l l =̇

ε l 1 m + l 0 m × l (| l 111 m + l 111 m |) m ε

ε l 1 m + l 0 m × l (| l +++ m |) m ε

ε l 1 m + l 000 m × l (|(|(| =̇ |)|)|) m ε

ε l 111 m + l ××× m ε

ε l +++ m ε

ε =̇ ε

1 + 0× (|111 + 111|)
1 + 0× (|A+++B|)

1 + 000× (|(|(|A|)|)|)
111 +B××× C
A+++B

A

Figure 1 (left) Operator precedence matrix
where parentheses take precedence over multipli-
cation, which takes precedence over addition. The
cells marked by · denote the irrelevant relations.

Figure 2 (center) Computation of the
collapsed from of 1 + 0× (|1 + 1|)

Figure 3 (right) Derivation tree of the
words 1 + 0× (|1 + 1|) ∈ L(Garith)

Every word induces a sequence of precedences. For some words, this sequence corresponds
to a chain [43], which is a building block of structured words.

I Definition 1 (chain). Let ai ∈ Σ̂ and ui ∈ Σ̂∗ for all i ∈ N, and let n ≥ 1. A word w =
a0a1 . . . an+1 is a simple chain when a0, an+1 ∈ Σ̂∪ {ε} and a0 l a1 =̇ a2 =̇ ... =̇ an m an+1.
A word w = a0u0a1u1 . . . anunan+1 is a composite chain when a0a1 . . . an+1 is a simple chain
and for all 0 ≤ i ≤ n, either aiuiai+1 is a (simple or composite) chain or ui = ε. A word w
is a chain when w is a simple or a composite chain.

For all x, y, z ∈ Σ̂∗, the predicate x[y]z holds iff (x.)y(z/) is a chain. Note that, if x[y]z
then xyz 6= ε.

I Example 2. Let Σ̂ be the operator precedence alphabet in Figure 1 that specifies the
precedence relations for generating arithmetic expressions. The word (|(||)|) is a simple chain
because (| l (| =̇ |) m |). Moreover, the word (|1 + 1|) is a composite chain because the words
(|1+, +1|), and (|+ |) are simple chains.

Next, we define a function that conservatively simplifies the structure of a given word.

I Definition 3 (collapsing function). For a given operator precedence alphabet Σ̂, its collapsing
function λΣ̂ : Σ̂∗ → Σ̂∗ is defined inductively as follows: λΣ̂(w) = λΣ̂(xz) if w = xyz and
x[y]z for some x, y, z ∈ Σ̂+, and λΣ̂(w) = w if there is no such x, y, z ∈ Σ̂+. When Σ̂ is clear
from the context, we denote its collapsing function by λ.

For every w ∈ Σ̂, observe that λ(w) is in the following collapsed form: there exist
1 ≤ i ≤ j ≤ n = |λ(w)| such that a1 ≥m . . . ≥m ai−1 m ai =̇ ai+1 =̇ . . . =̇ aj l aj+1 ≤l . . . ≤l an.

I Example 4. Let Σ̂ be the operator precedence alphabet in Figure 1. Let w = (|1+0|)×(|1+1|)
and observe that λ(w) = (||)× (||) since (|[1 + 0]|) and (|[1 + 1]|). Note also that (| =̇ |) m × l
(| =̇ |).

Note that the collapsed form is unique and allows us to generalize classical notions of
well-nested words.

I Definition 5 (structured words). Let Σ̂ be an operator precedence alphabet. We define the
following sets of words:

Σ̂∗≤l = {w ∈ Σ̂∗ | λ(w) = a1 . . . an where ai ≤l ai+1 for all i, or |λ(w)| ≤ 1}
Σ̂∗≥m = {w ∈ Σ̂∗ | λ(w) = a1 . . . an where ai ≥m ai+1 for all i, or |λ(w)| ≤ 1}
Σ̂∗=̇ = {w ∈ Σ̂∗ | λ(w) = a1 . . . an where ai =̇ ai+1 for all i, or |λ(w)| ≤ 1} = Σ̂∗≤l ∩ Σ̂∗≥m
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Looking back at the definition of collapsed form, one can verify for every word w ∈ Σ̂∗
that w ∈ Σ̂∗≤l iff i = 1, and w ∈ Σ̂∗≥m iff j = n.

I Example 6. Let Σ̂ be the operator precedence alphabet in Figure 1. The word +× (||) is in
Σ̂∗≤l , the word (||)×+ is in Σ̂∗≥m , and the word (||) is in Σ̂∗=̇. Moreover, note that + l × l (| =̇ |)
and (| =̇ |) m × m +.

2.2 Operator Precedence Grammars
A context-free grammar G = (Σ, V,R, S) is tuple where Σ is a finite set of terminal symbols,
V is a finite set of non-terminal symbols, R ⊆ V × (Σ ∪ V )∗ is a finite set of derivation
rules, and S ∈ V is the starting symbol. Given α, β ∈ (Σ ∪ V )∗, we write α → β when β
can be derived from α with one rule, i.e., when there exists (α2, β2) ∈ R, α = α1α2α3 and
β = α1β2α3. Derivations using a sequence of rules are denoted by →∗, the transitive closure
of the relation →. The language of G is L(G) = {w ∈ Σ∗ | S →∗ w}. A derivation tree for
u ∈ L(G) is a tree over Σ ∪ V ∪ {ε} such that the root is labeled by S, the concatenation
of all leaves is u, and if a node is labeled by α and its children labeled by β1, . . . , βk then
(α, β1 . . . βk) ∈ R. A grammar is said to be non-ambiguous when for all u ∈ L(G) admits a
unique derivation tree.

Intuitively, an operator precedence grammar (OPG for short) is an unambiguous context-
free grammar whose derivation trees comply with some operator precedence matrix. Formally,
let G = (Σ, V,R, S) be a context-free grammar and A ∈ V be a non-terminal, and define the
following sets of terminal symbols where B ∈ V ∪ {ε} and α ∈ (V ∪ Σ)∗:

LG(A) = {a ∈ Σ | A→∗ Baα} RG(A) = {a ∈ Σ | A→∗ αaB}

Given a, b ∈ Σ, we define the following operator precedence relations where α, β ∈ (V ∪ Σ)∗:
a lG b iff there exists a rule A→ αaCβ where C ∈ V and b ∈ LG(C),
a mG b iff there exists a rule A→ αCbβ where C ∈ V and a ∈ RG(C),
a =̇G b iff there exists a rule A→ αaCbβ where C ∈ V ∪ {ε}.

Finally, G is an operator precedence grammar if and only if for all a, b ∈ Σ, we have that
|{� ∈ {lG, =̇G,mG} | a� b}| ≤ 1.

I Example 7. Let Garith = (Σ, V,R,A) be a context-free grammar over Σ̂ = {+,×, (|, |), 0, 1}
as in Figure 1 where V = {A,B,C} and R contains the following rules:

A→ A+B | B B → B × C | C C → (|A|) | 0 | 1

The language L(Garith) consists of valid arithmetic expressions with an implicit relation
between terminal symbols: parentheses take precedence over multiplication, which takes
precedence over addition [43]. The missing relations, replaced by · in the matrix of Figure 1,
denote the precedence relations that cannot be encountered by the given grammar, so the
chosen precedence relation does not matter. For example, 00 and |)(| are not valid arithmetic
expressions and cannot be generated by Garith. We remark that the structures of derivation
trees and chains share strong similarities as highlighted by Figure 2 and Figure 3.

2.3 Operator Precedence Automata
Intuitively, operator precedence automata are pushdown automata where stack operations
are determined by the precedence relations between the next letter and the top of the stack.
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I Definition 8 (operator precedence automaton). An operator precedence automaton (OPA
for short) over Σ̂ is a tuple A = (Q, I, F,∆) where Q is a finite set of states, I ⊆ Q is the set
of initial states, F ⊆ Q is a set of accepting states, and ∆ ⊆

(
Q× (Σ ∪ {ε})× (Γ+ ∪ {⊥})

)2
is the Σ̂-driven transition relation where Γ = Σ×Q is the stack alphabet and ⊥ denotes the
empty stack, meaning that, when ((s, a, α), (t, b, β)) ∈ ∆ the following holds:

If α = ⊥ or α = 〈q, a′〉α′ with a′ l a, then the input triggers a push stack-operation
implying that b = ε and β = 〈s, a〉α. We write (s, α) a (t, β).
If α = 〈q, a′〉α′ with a′ =̇ a, then the input triggers a shift stack-operation implying that
b = ε and β = 〈q, a〉α′. We write (s, α) a (t, β).
If α = 〈q, a′〉α′ with a′ m a, then the input triggers a pop stack-operation implying that
b = a and β = α′. We write (s, α) a (t, β).

Let A be an OPA. A configuration of A is a triplet (q, u, θ) where q ∈ Q is the current
state, u ∈ Σ∗ is the input suffix left to be read, and θ ∈ Γ+ ∪ {⊥} is the current stack.
A run of A is a finite sequence of configurations ((qi, ui, θi))1≤i≤n for some n ∈ N such
that, for all 1 ≤ i ≤ n, the automaton fires (i) a push-transition (qi−1, θi−1) a (qi, θi)
where ui−1 = aui, (ii) a shift-transition (qi−1, θi−1) a (qi, θi) where ui−1 = aui, or (iii)
a pop-transition (qi−1, θi−1) a (qi, θi) where ui−1 = ui ∈ {au | u ∈ Σ∗}. We write
(s, u, α) (t, v, β) when (s, u, α)(t, v, β) is a run, and let (s, u, α) ∗ (t, v, β) be its reflexive
transitive closure. For all n ∈ N, we define the predicate (s, u, α) n (t, v, β) inductively by
(s, u, α) = (t, v, β) when n = 0 and by ∃(q, w, θ), (s, u, α) (q, w, θ) n−1 (t, v, β) otherwise.
The language of A is defined by L(A) = {w ∈ Σ∗ | q0 ∈ I, qF ∈ F, (q0, w,⊥) ∗ (qF , ε,⊥)}.
An OPA is deterministic when |I| = 1 and ∆ is a function from Q × Σ × (Γ+ ∪ {⊥}) to
Q× (Σ ∪ {ε})× (Γ+ ∪ {⊥}), and it is complete when from every configuration (s, u, θ) there
exists a run that ends in (t, ε,⊥) for some state t ∈ Q. For a given stack θ ∈ Γ+ ∪ {⊥}, we
define θ> as the stack symbol at the top of θ if θ ∈ Γ+, and θ> = ε if θ = ⊥.

I Definition 9 (operator precedence language). An operator precedence language (OPL for
short) is a language recognized by some operator precedence automaton.

If L is an OPL over the operator precedence alphabet Σ̂, we say that L is a Σ̂-OPL.

I Remark 10. The literature on OPLs often assumes the =̇-acyclicity of operator precedence
relations of the alphabet, i.e., that there is no n ≥ 1 and a1, . . . , an ∈ Σ with a1 =̇ . . . =̇
an =̇ a1. This assumption is used to bound the right-hand side of OPG derivation rules,
and find a key application for constructing an OPG that recognizes the language of a given
OPA [43]. We omit this assumption since it is not needed for establishing the results on
OPAs, including the construction of an OPA that recognizes the language of a given OPG.

Now, we present an OPA that recognizes valid arithmetic expressions.

I Example 11. Recall the OPG of Example 7 generating arithmetic expressions over the
operator precedence alphabet of Figure 1. In Figure 4, we show an OPA that recognizes the
same language and an example of a computation.

2.4 Expressiveness and Decidability of Operator Precedence Languages
In this section, briefly summarize some known results about OPLs. First, we remark that
OPLs are context-free languages as they are recognized by a subclass of pushdown automata.

I Theorem 12 (from [20]). Deterministic context-free languages strictly include OPLs.
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q0 q1

q2 q3

0, 1

+,×
q0, q1

(|

(|
0, 1

+,×
q0, q1, q2, q3

|)

state input stack state input stack
q0 1× (|0 + 1|) ⊥ q2 1|) 〈q3, +〉〈q0, (|〉〈q1,×〉⊥
q1 ×(|0 + 1|) 〈q0, 1〉⊥ q3 |) 〈q2, 1〉〈q3, +〉〈q0, (|〉〈q1,×〉⊥
q1 ×(|0 + 1|) ⊥ q3 |) 〈q3, +〉〈q0, (|〉〈q1,×〉⊥
q0 (|0 + 1|) 〈q1,×〉⊥ q3 |) 〈q0, (|〉〈q1,×〉⊥
q2 0 + 1|) 〈q0, (|〉〈q1,×〉⊥ q3 ε 〈q0, |)〉〈q1,×〉⊥
q3 +1|) 〈q2, 0〉〈q0, (|〉〈q1,×〉⊥ q3 ε 〈q1,×〉⊥
q3 +1|) 〈q0, (|〉〈q1,×〉⊥ q3 ε ⊥

Figure 4 An OPA recognizing the arithmetic expressions generated by the OPG in Example 7
and its run on the input word 1× (|0 + 1|). Shift-, push-, and pop-transitions are respectively denoted
by dashed, normal, and double arrows.

The language L = {anban | n ≥ 0}, which is a deterministic context-free language,
separates the two classes. Indeed, it is not an OPL because while the first segment of an must
push to the stack (i.e., a l a), the last segment must pop (i.e., a m a), resulting in conflicting
precedence relations. Next, we recall that OPLs enjoy the many closure properties.

I Theorem 13 (from [20, 21]). OPLs are closed under boolean operations, concatenation,
Kleene star, reversal, prefixing, and suffixing.

The class of VPLs enjoy these closure as well. In fact, every VPL can be expressed as
an OPL with an operator precedence alphabet designed as follows: internal characters and
returns take precedence over any character; calls equal in precedence with returns, and they
yield precedence to calls and internal characters.

I Theorem 14 (from [20]). OPLs strictly include visibly pushdown languages.

The language L = {anbn | n ≥ 1} ∪ {cndn | n ≥ 1} ∪ {en(bd)n | n ≥ 1}, which is an OPL
due to their closure under union, separate the two classes. Indeed, for L to be a VPL, the
first set requires that a is a call and b is a return. Similarly, c is a call and d is a return due
to the second set. However, the last set requires that at most one of b and d is a return,
resulting in a contradiction. We also note that OPAs support determinization.

I Theorem 15 (from [43]). Every OPL can be recognized by a deterministic OPA.

Despite their expressive power, OPL remain decidable for the classical decision problems.
In particular, OPAs enjoy the same order of complexity as VPDA for basic decision problems.

I Theorem 16 (from [42, 43]). The language emptiness is in PTime-C for OPAs. The
language inclusion, universality, and equivalence are in PTime for deterministic OPAs and
ExpTime-C for nondeterministic OPAs.

I Remark 17. The membership problem is in PTime for OPAs. Determining whether a given
word w is accepted by a given OPA A can be done in polynomial time by constructing an
automaton B that accepts only w, constructing the intersection C of A and B, and deciding
the non-emptiness of C.

3 A Finite Congruence for Operator Precedence Languages

This section introduces a congruence-based characterization of OPLs, similar to the Myhill-
Nerode congruence for regular languages. We let Σ̂ be an operator precedence alphabet
throughout the section. A relation ./ over Σ̂∗ is monotonic when x ./ y implies uxv ./ uyv
for all x, y, u, v ∈ Σ̂∗. Intuitively, monotonicity requires two words in relation to stay related
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while becoming embedded into some context that constructs a larger word. However, such
a definition is not well suited for structured words as it does not follow how chains are
constructed. Hence, we introduce a more restrictive notion than monotonicity.

I Definition 18 (chain-monotonicity). A relation ./ over Σ̂∗ is chain-monotonic when x ./ y

implies uu0xv0v ./ uu0yv0v for all x, y, u, v, u0, v0 ∈ Σ̂∗ such that u0z
/ ∈ Σ̂∗≥m , z.v0 ∈ Σ̂∗≤l ,

and u[u0zv0]v for each z ∈ {x, y}.

Chain-monotonicity requires two words in relation to stay related while being embedded
into some context that construct larger structured words. This leads us to describe when two
words agree on whether an embedding into a larger word forms a chain. For this, we introduce
a relation that relates words that behave similarly with respect to the chain structure.

I Definition 19 (chain equivalence). We define the chain equivalence ≈ over Σ̂∗ as follows:

x ≈ y ⇐⇒
∧{

x/ = y/ ∧ x. = y.

∀u, v, u0, v0 ∈ Σ̂∗,
(
u0x

/ ∈ Σ̂∗≥m ∧ x.v0 ∈ Σ̂∗≤l
)
⇒
(

u[u0xv0]v ⇔ u[u0yv0]v
)

We observe that ε is in relation with itself exclusively, i.e., x = ε iff ε ≈ x iff x ≈ ε.
Consider a word w ∈ Σ̂+ for which λ(w) is of the form a1 . . . a`b1 . . . bmc1 . . . cn for some
`,m, n ∈ N such that a1 ≥m . . . ≥m a` m b1 =̇ . . . =̇ bm l c1 ≤l . . . ≤l cn where ai, bj , ck ∈ Σ for
all i, j, k. We define the profile of w as Pw = (w/, w., P /

w, P
.
w), where P /

w = {a1, b1} ∪ {ai+1 |
ai m ai+1, 1 ≤ i < `} and P .

w = {bm, cn} ∪ {ck | ck l ck+1, 1 ≤ k < n}. There are at most
|Σ|2 × 22|Σ|−2 + 1 profiles. We can show that two words with the same profile are chain
equivalent, leading to the following proposition.

I Proposition 20. ≈ is a chain-monotonic equivalence relation with finitely many classes.

Next, we introduce an equivalence relation that characterizes OPLs.

I Definition 21 (syntactic congruence). Given L ⊆ Σ̂∗, we define ≡L as the following relation
over Σ̂∗:

x ≡L y ⇐⇒ x ≈ y ∧

{
∀u, v, u0, v0 ∈ Σ̂∗,

(
u0x

/ ∈ Σ̂∗≥m ∧ x.v0 ∈ Σ̂∗≤l ∧ u[u0xv0]v
)

⇒
(
uu0xv0v ∈ L⇔ uu0yv0v ∈ L

)
Let us demonstrate the syntactic congruence.

I Example 22. Let Σ = {a, b} and let Σ̂ be the operator precedence alphabet with the
relations a l a, a =̇ b, b m a, and b m b. Consider the language L = {anbn | n ≥ 1}.

There are 17 potential profiles for Σ̂ in total. Although some of them cannot occur due
to the precedence relations of Σ̂, the remaining ones correspond to the equivalence classes
of ≈. For example, (a, a, {a}, {a, b}) cannot occur since b m a, and (a, b, {a}, {b}) contains
exactly the words in L which are of the form anbn for some n ≥ 1. For brevity, we only show
how the syntactic congruence ≡L refines the class of ≈ corresponding to (a, a, {a}, {a}) by
splitting it into four subclasses. The profile (a, a, {a}, {a}) captures exactly the words of the
form w = a or w = aua where in each prefix of au there are no more b’s than a’s. Notice
that for such w, λ(w) is of the form (ab)∗a+, where a+ = {an | n > 0}.

We first argue that a 6≡L aa but aa ≡L aan for all n ≥ 1. Taking u = v = u0 = ε and
v0 = b, observe that the preconditions for the syntactic congruence are satisfied but ab ∈ L
while aab /∈ L, therefore a 6≡L aa. Now, let n ≥ 2, and consider the words aa and aan.
Intuitively, since there is no x, y ∈ Σ̂∗ such that xaay ∈ L and xaany ∈ L, we show that
whenever the preconditions for the congruence are satisfied, both longer words are out of L.



10 Regular Methods for OPLs

Given u, v, u0, v0 ∈ Σ̂∗ such that u0a ∈ Σ̂∗≥m , av0 ∈ Σ̂∗≤l , and u[u0aav0]v, we assume towards
contradiction that uu0aav0v ∈ L. Since uu0aav0v ∈ L and u0a ∈ Σ̂∗≥m , we have u0 = ε.
Moreover, since av0 ∈ Σ̂∗≤l , we have that v0 is either of the from a∗ or a∗b. Consequently,
λ(u0aav0) is aaa∗ or aaa∗b. This contradicts that u[u0aav0]v because a l a, and therefore
uu0aav0v /∈ L. The same argument shows that uu0aa

nv0v /∈ L, implying that aa ≡L aan.
Similarly as above, we can show that u 6≡L v but v ≡L w for all u, v, w ∈ Σ̂∗ such that
λ(u) = (ab)ia, λ(v) = (ab)jaa, and λ(w) = (ab)kaan, where n, i, j, k ≥ 1.

We now show that the syntactic congruence is chain-monotonic.

I Theorem 23. For every L ⊆ Σ̂∗, ≡L is a chain-monotonic equivalence relation.

The main result of this section is the characterization theorem below. We prove each
direction separately in Sections 3.1 and 3.2.

I Theorem 24. A language L is an OPL iff ≡L admits finitely many equivalence classes.

3.1 Finiteness of the Syntactic Congruence
Let Σ̂ be an operator precedence alphabet, A = (Q, I, F,∆) be an OPA over Σ̂, and ? /∈ Σ
be a fresh letter for which we extend the precedence relation with a l ? for all a ∈ Σ.

For every word w ∈ Σ̂∗, we define the functions fw : Q× (Γ ∪ {⊥})→ 2Q and Φw : Q×
(Γ ∪ {⊥})→ 2Γ+∪{⊥} such that for all q ∈ Q and all γ ∈ Γ ∪ {⊥}, we have fw(q, γ) = {qw ∈
Q | ∃γw ∈ Γ+ ∪ {⊥}, (q, w?, γ) ∗ (qw, ?, γw)} and Φw(q, γ) = {γw ∈ Γ+ ∪ {⊥} | ∃qw ∈
Q, (q, w?, γ) ∗ (qw, ?, γw)}. Intuitively, the states in fw(q, γ) and the stacks in Φw(q, γ)
come from the configurations that A can reach after reading w from an initial state in I, but
before triggering any pop-transition due to reaching the end of the word w.

Furthermore, for every w ∈ Σ̂∗, we define the function gw : Q2 × (Γ ∪ {⊥}) → 2Q such
that for all q1, q2 ∈ Q and all γ ∈ Γ ∪ {⊥} we have gw(q1, q2, γ) = {pw ∈ Q | ∃γw ∈
Φw(q1, γ), (q2, ε, γw) ∗ (pw, ε,⊥)}. Intuitively, gw(q1, q2, γ) is the set of states that A can
reach after triggering from q2 the pop-transitions that empty the (unique) stack γw ∈ Φw(q1, γ)
that was generated by reading w while moving from the state q1 to some state in fw(q1, γ).

Recall that for a given stack θ ∈ Γ+ ∪ {⊥}, we denote by θ> the stack symbol at the top
of θ, which is ε when θ = ⊥. Moreover, for a given set of stacks Θ ⊆ Γ+ ∪ {⊥}, let us define
Θ> = {θ> | θ ∈ Θ}. For the sequel, we define the following equivalence relation:

I Definition 25 (structural congruence). Given an OPA A = (Q, I, F,∆), we define the
relation ≡A over Σ̂∗ as follows:

x ≡A y ⇐⇒ x ≈ y∧fx = fy∧gx = gy∧
(
∀q ∈ Q,∀γ ∈ Γ∪{⊥}, (Φx(q, γ))> = (Φy(q, γ))>

)
First, we show that the structural congruence of any OPA has a finite index.

I Lemma 26. For every OPA A with n states and m input letters, the structural congruence
≡A has at most O(m)O(m×n)O(1) equivalence classes.

Then, we show that for any OPA the syntactic congruence of its language is coarser than
its structural congruence, therefore has a finite index as well.

I Lemma 27. For every OPA A, the congruence ≡L(A) is coarser than the congruence ≡A.

As a direct result of Lemmas 26 and 27 above, we obtain the following.

I Corollary 28. For every L ⊆ Σ̂∗, if L is a Σ̂-OPL then ≡L has finite index.
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3.2 From the Syntactic Congruence to Operator Precedence Automata
Consider a language L ⊆ Σ̂∗ such that ≡L has finitely many equivalence classes. We construct
a deterministic OPA that recognizes L and whose states are based on the equivalence classes of
≡L. Given w ∈ Σ̂∗, we denote by [w] its equivalence class with respect to ≡L. We construct
A = (Q, {q0}, F,∆) with the set of states Q = {([u], [v]) | u, v ∈ Σ̂∗}, the initial state
q0 = ([ε], [ε]), the set of accepting states F = {([ε], [w]) | w ∈ L}, and the Σ̂-driven transition
function ∆: Q×Σ× (Γ+ ∪{⊥})→ Q× (Σ∪{ε})× (Γ+ ∪{⊥}), where Γ = Σ×Q, is defined
as follows: ∆ maps (([u], [v]), a, 〈b, ([u′], [v′])〉θ) to (([a], [ε]), ε, 〈a, ([u], [v])〉〈b, ([u′], [v′])〉θ) if
b l a, it returns (([uva], [ε]), ε, 〈a, ([u′], [v′])〉θ) if b =̇ a, and (([u′], [v′uv]), a, θ) if b m a. The
soundness of our construction is given by the proof of the following lemma in Appendix.

I Lemma 29. For every L ⊆ Σ̂∗, if ≡L has finite index then L is a Σ̂-OPL.

4 Antichain-based Inclusion Checking

Considering two languages L1 and L2 given by some automata, the classical approach for
deciding whether L1 ⊆ L2 holds is to first compute the complement L2 of L2, and then
decide the emptiness of L1 ∩ L2. The major drawback with this approach is that the
complementation requires the determinization of the automaton denoting L2. A way to avoid
the determinization is to search among words of L1 for a counterexample to L1 ⊆ L2. For
this, a breadth-first search can be performed symbolically as a fixpoint iteration. In order to
guarantee its termination, the search is equipped with a well quasi-order, and considers only
words that are not subsumed, i.e., the minima of L1 with respect to the quasi-order. It is
known that well quasi-orders satisfy the finite basis property, i.e., all sets of words have finitely
many minima. Our approach is inspired by [36] which, in the context of unstructured words,
presents the antichain approach as a Galois connection, and observes that the upward closure
of the quasi-order is a complete abstraction of concatenation according to the standard notion
of completeness in abstract interpretation [16]. We identify, in the context of structured
words, sufficient conditions on quasi-orders to enable the antichain approach, by defining the
class of language abstraction quasi-orders (which satisfy the finite basis property). Further,
we relax the syntactic congruence into a quasi-order that is a language abstraction of a given
OPL. In particular, we prove that the syntactic congruence itself is a language abstraction for
its language. Then, we design our inclusion algorithm based on a fixpoint characterization of
OPLs, which allows us to iterate breadth-first over all words accepted by a given OPA. Once
equipped with a language abstraction quasi-order, this fixpoint is guaranteed to terminate,
thus to synthesize a finite set T ⊆ L1 of membership queries for L2 which suffices to decide
whether L1 ⊆ L2 holds.

4.1 Language Abstraction by Quasi-order
Let E be a set of elements and 4 be a binary relation over E. The relation 4 is a quasi-order
when it is reflexive and transitive. A quasi-order 4 over E is decidable if for all x, y ∈ E,
determining whether x 4 y holds is computable. Given a subset X of E, we define its upward
closure with respect to the quasi-order 4 by 4�X = {e ∈ E | ∃x ∈ X,x 4 e}. Given two
subsets X,Y ⊆ E the set X is a basis for Y with respect to 4, denoted B(X 4 Y ), whenever
X ⊆ Y and 4�X = 4�Y . The quasi-order 4 is a well quasi-order if and only if for each set
Y ⊆ E there exists a finite set X ⊆ E such that B(X 4 Y ). This property on bases is also
known as the finite basis property. Other equivalent definitions of well quasi-orders can be
found in the literature [23], we will use the following two:
(†) For every sequence {ei}i∈N in E, there exists i, j ∈ N with i < j such that ei 4 ej .
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Figure 5 (left) OPA A over Σ̂cr recog-
nizing the VPL of well-matched call/return
words.

Figure 6 (right) OPA B over Σ̂cr recog-
nizing the regular language of words of even
length.

(‡) There is no sequence {Xi}i∈N in 2E such that 4�X1 ( 4�X2 ( . . . holds.

Let L1, L2 be two languages. The main idea behind our inclusion algorithm is to compute
a finite subset T of L1, called a query-basis, such that T ⊆ L2 ⇔ L1 ⊆ L2. Then, L1 ⊆ L2
holds if and only if each word of T belongs to L2, which is checked via finitely many
membership queries. The computation of a query-basis consists of collecting enough words
of L1 to obtain a finite basis T for L1 with respect to a quasi-order 4 that abstracts L2.
When 4 is a well quasi-order, some basis is guaranteed to exist thanks to the finite basis
property. To ensure the equivalence L1 ⊆ L2 ⇔ T ⊆ L2 for any T such that B(T 4 L1),
a counterexample w ∈ L1 \ L2 can be discarded (not included in T ), only if it there exists
w0 ∈ T such that w0 4 w and w0 is also a counterexample. Thus, we introduce the language
saturation property asking a quasi-order 4 to satisfy the following: for all w0, w ∈ Σ̂∗ if
w0 4 w and w0 ∈ L2 then w ∈ L2, or equivalently, 4�L2 = L2. Intuitively, language
saturation ensures the completeness of the language abstraction with respect to the inclusion.
Finally, to guarantee that the query-basis T is iteratively constructible with an effective
fixpoint computation, the quasi-order 4 must be both chain-monotonic and decidable. We
now define the notion of language abstraction to identify the properties for a quasi-order over
structured words that allow an effectively computable query-basis, as was done in [25, 36] in
the context of Büchi automata for quasi-orders over unstructured infinite words.

I Definition 30 (language abstraction). Let L ⊆ Σ̂∗. A quasi-order 4 over Σ̂∗ is a language
abstraction of L iff (1) it is decidable, (2) it is chain-monotonic, (3) it is a well quasi-order,
and (4) it saturates L.

In the next section, we provide an effective computation of a query-basis for an OPA,
thanks to a quasi-order that abstracts its language.

I Example 31. The operator precedence alphabet Σ̂cr of A and B from Figures 5 and 6
induces four families of words: (1) the words of Σ̂∗=̇ where every c matches an r, (2) the
words of Σ̂∗l = Σ̂∗≤l \ Σ̂∗=̇ where some c is pending for an r on its right, (3) the words of
Σ̂∗m = Σ̂∗≥m \ Σ̂∗=̇ where some r is pending for a c on its left, and (4) all other words of
Σ̂∗6=̇= = Σ∗ \

(
Σ̂∗≤l ∪ Σ̂∗≥m

)
.

We focus on deciding whether L(B) is a subset of L(A) and suppose that we are given
the quasi-order � that is a language abstraction of L(A). Additionally, we have that two
words compare with � only if they belong to the same family, and we have the following
bases: B({cr} � Σ̂∗=̇), B({c} � Σ̂∗l), B({r} � Σ̂∗m), and B({rc} � Σ̂∗6=̇= ). We observe that
� saturates L(A) since Σ̂∗=̇ ⊆ L(A) and Σ̂∗≤l , Σ̂∗≥m , Σ̂∗6=̇= * L(A).

Among the representatives cr, c, r, and rc, we can construct the set T = {cr, rc} since
c, r /∈ L(B). The set T is a query-basis for deciding whether L(B) is a subset of L(A). In
particular, rc ∈ T witnesses that L(B) * L(A).
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Note that the syntactic congruence is a natural language abstraction of OPLs.

I Proposition 32. For every OPL L, ≡L is a language abstraction of L.

When the language to be abstracted is given by an OPA we are able to define a quasi-order,
called structural quasi-order, that is based on the underlying structure of the automaton.

I Definition 33 (structural quasi-order). Given an OPA A = (Q, I, F,∆), we define the
relation 6A over Σ̂∗ as follows:

x 6A y ⇐⇒ x ≈ y ∧ ∀q, q′ ∈ Q,∀γ ∈ Γ ∪ {⊥}
∧

fx(q, γ) ⊆ fy(q, γ)
gx(q, q′, γ) ⊆ gy(q, q′, γ)
(Φx(q, γ))> ⊆ (Φy(q, γ))>

I Remark 34. For every OPA A, the quasi-order 6A relaxes the congruence ≡A from Section 3.
For every OPA A, the quasi-order 6A relaxes the congruence ≡A from Section 3.

Note that, for every OPA A, the set Q × (Γ ∪ {⊥}) is finite. Consequently, 6A is
computable, and it is a well quasi-order since there cannot exist an infinite sequence of
incomparable elements, i.e., (†) holds.

I Proposition 35. For every OPA A, 6A is a computable chain-monotonic well quasi-order.

Next, we establish that structural quasi-orders saturate their languages.

I Lemma 36. For every OPA A and w1, w2 ∈ Σ̂∗, if w1 6A w2 and w1 ∈ L(A) then
w2 ∈ L(A).

The following comes as a direct consequence of Proposition 35 and Lemma 36.

I Corollary 37. For every OPA A, 6A is a language abstraction of L(A).

We continue Example 31, showing that the structural quasi-order agrees with the consid-
ered bases above.

I Example 38. The quasi-order � described in Example 31 agrees with the structural
quasi-order 6A of the OPA A in Figure 5. Indeed, due to the constraint that two comparable
words x, y ∈ Σ̂∗ should be chain equivalent, i.e., x ≈ y, the quasi-order 6A compares only the
words from the same families among Σ̂∗=̇, Σ̂∗l, Σ̂∗m, and Σ̂∗6=̇= . We also note that, for all words,
adding a factor in Σ̂∗=̇ cannot change the accessibility in A since reading such a factor has no
effect on the stack or the current state. Additionally, reading several c in a row triggers a
self loop and reading several r is not possible in A. As a consequence, the base predicates
mentioned in Example 31 hold, that is, B({cr} 6A Σ̂∗=̇), B({c} 6A Σ̂∗l), B({r} 6A Σ̂∗m),
and B({rc} 6A Σ̂∗6=̇= ). Yet, we have that cr 6A ε because (q0, cr,⊥) ∗ (q2, ε, 〈c, q0〉) but
(q0, ε,⊥) / ∗ (q2, ε, 〈c, q0〉).

4.2 Fixpoint Characterization of Languages and Inclusion
In order to formulate our inclusion algorithm, it remains to give an effective computation of
a query-basis. We do so through a fixpoint characterization of the languages recognized by
OPAs. We introduce the function Cat to construct words that follow the runs of the given
OPA. Iterating the Cat function n ∈ N times captures all words of length up to n, and the
fixpoint of the iteration captures the entire language of a given OPA.

Let A = (Q, I, F,∆) be an OPA. Consider a vector of set of words ~X that accesses its
fields with two states s, t ∈ Q, and three letters a, b, c ∈ Σ̂ ∪ {ε}. Intuitively, we aim at
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constructing ~X iteratively such that, reading any w ∈ ~Xa,b,c
s,t from the configuration (s, wc, α)

where α> = a allows reaching (t, c, β) where β> = b in A. We recall that ⊥> = ε. As
the base case, we take ~Xa,b,c

s,t = ε when a = b and s = t, otherwise ~Xa,b,c
s,t = ∅. Then, we

introduce operations (more explicitly, functions from sets of words to sets of words) that use
the transitivity of ∗ in A to extend the sets of ~X. We first introduce:

CatShift( ~Xa,b,c
s,t ) =

{
ub′v

a′, b′ ∈ Σ, q, s′, t′ ∈ Q, u ∈ ~Xa,a′,b′

s,s′ , v ∈ ~Xb′,b,c
t′,t ,

(s′, 〈a′, q〉⊥) b′ (t′, 〈b′, q〉⊥)

}

Essentially, CatShift adds ub′v to ~Xa,b,c
s,t when some run over u can be appended with b′

thanks to a shift-transition, and some run of v requires starting with b′ at the top of the
stack. Next, we introduce:

CatChain( ~Xa,b,c
s,t ) =

{
ub′v

a′, b′, c′ ∈ Σ, q, s′, t′ ∈ Q, u ∈ ~Xa,b,b′

s,q , v ∈ ~Xb′,c′,c
s′,t′ ,

b l b′ ∧ (q,⊥) b′ (s′, 〈b′, q〉⊥) ∧ (t′, 〈c′, q〉⊥) c (t,⊥)

}

Intuitively, CatChain adds ub′v to ~Xa,b,c
s,t when some run over u can be appended with b′

thanks to a push-transition, and some run of v requires starting with b′ at the top of the
stack. Additionally, b′ is guaranteed to be removed from the stack thanks to a pop-transition
on the incoming letter c. Finally, we define:

Cat( ~Xa,b,c
s,t ) = ~Xa,b,c

s,t ∪ CatShift( ~Xa,b,c
s,t ) ∪ CatChain( ~Xa,b,c

s,t )

Note that the function Cat never removes words from the sets of ~X, i.e., ~Xa,b,c
s,t ⊆ Cat( ~Xa,b,c

s,t ).
Iterating the Cat function n ∈ N times allows us to extend the sets of ~X to words of length
at most n that follow some run of A. In particular, Cat characterizes the language of A by
w ∈ L(A) if and only if w ∈ Cat∗( ~Xε,ε,ε

qI ,qF
) for some qI ∈ I and qF ∈ F . This is formalized by

the following lemma.

I Lemma 39. Let A = (Q, I, F,∆) be an OPA, and let Γ = Σ×Q. Considering ~Ua,b,c
s,t = ε

when a = b and s = t, otherwise ~Ua,b,c
s,t = ∅. The following holds for all n > 0:

Catn(~Ua,b,c
s,t )=

{
u | (s, uc, α) ∗(t, c, β), |u| = n, α ∈ Θa, β ∈ Θb, au ∈ Σ̂∗≤l , uc ∈ Σ̂∗≥m , u. = b

}
where, for all a ∈ Σ̂, the set of stack symbols Θa ⊆ Γ ∪ {⊥} is defined by Θa = {⊥} if a = ε,
and Θa = {〈a, q〉 | q ∈ Q} otherwise.

We continue Example 31, showing that Cat agrees with the considered query-basis.

I Example 40. Let ~Ua,b,c
s,t = ε when a = b and s = t, otherwise ~Ua,b,c

s,t = ∅. Thanks to
Lemma 39, we have that L(B) = Cat∗(~Uε,ε,ε

p0,p0
). First observe that c, r /∈ Cat∗(~Uε,ε,ε

p0,p0
). This

comes from Lemma 39 and the fact that there is no run of B from p0 to p0 that reads a
single letter. Next, we prove that cr, rc ∈ Cat2(~Uε,ε,ε

p0,p0
).

We show that r ∈ Cat(~Uε,ε,c
p0,p1

) by CatChain. Indeed, we have ε ∈ ~Uε,ε,r
p0,p0

, ε ∈ ~Ur,r,c
p1,p1

,
ε l r, and (p0,⊥) r (p1, 〈r, p1〉⊥) c (p1,⊥). Then, rc ∈ Cat2(~Uε,ε,ε

p0,p0
) by CatChain since

r ∈ Cat(~Uε,ε,c
p0,p1

), ε ∈ ~U c,c,ε
p0,p0

, ε l c, and (p1,⊥) c (p0, 〈c, p1〉⊥) ε (p1,⊥).
We show that r ∈ Cat(~U c,r,ε

p1,p0
) by CatShift. Indeed, we have ε ∈ ~U c,c,r

p1,p1
, ε ∈ ~Ur,r,ε

p0,p0
, and

(p1, 〈c, p〉⊥) r (p0, 〈r, p〉⊥), for all p ∈ {p0, p1}. Then, cr ∈ Cat2(~Uε,ε,ε
p0,p0

) by CatChain since
ε ∈ ~Uε,ε,c

p0,p0
, r ∈ Cat(~U c,r,ε

p1,p0
), ε l c, (p0,⊥) c (p1, 〈c, p0〉⊥), and (p0, 〈r, p0〉) ε (p0,⊥).
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The computation of a query-basis for deciding whether L1 is a subset of L2 consists
of iterating Cat to collect enough words to obtain a vector of finite bases with respect
to the quasi-order 4 that is a language abstraction of L2. In other words, we search for
n ∈ N such that Catn( ~Xa,b,c

s,t ) is a basis for limk 7→∞ Catk(~Ua,b,c
s,t ) with respect to 4. The

following lemma shows that when B(Catn( ~Xa,b,c
s,t ) 4 Catn+1( ~Xs,b,c

s,t )) holds for some n ∈ N,
then B(Catn( ~Xa,b,c

s,t ) 4 limk 7→∞ Catk( ~Xa,b,c
s,t )) holds also, as long as the used quasi-order is

chain-monotonic.

I Lemma 41. Let 4 be a chain-monotonic quasi-order over Σ̂∗. For every A = (Q, I, F,∆)
and ~X, ~Y such that B( ~Xa,b,c

s,t 4 ~Y a,b,c
s,t ) holds for all s, t ∈ Q and all a, b, c ∈ Σ∪{ε}, we have

B(Cat( ~Xa,b,c
s,t ) 4 Cat(~Y a,b,c

s,t )) holds also for all s, t ∈ Q and all a, b, c ∈ Σ ∪ {ε}.

Input: an OPL L1 given by the OPA (Q, I, F,∆)
Input: a language L2 with a procedure deciding if w ∈ L2
Input: a quasi-order 4 that is a language abstraction of L2
Output: Returns ok if L1 ⊆ L2 and ko otherwise

1 Function:
2 let ~U as ~Ua,b,c

s,t := ε if a = b ∧ s = t else ~Ua,b,c
s,t := ∅

3 ~X := ~U

4 repeat
5 let ~X as ~Xa,b,c

s,t := Cat( ~Xa,b,c
s,t )

6 until B( ~Xa,b,c
s,t 4 Cat( ~Xa,b,c

s,t )) for all s, t ∈ Q and all a, b, c ∈ Σ ∪ {ε}
7 for each (qI , qF ) ∈ I × F do
8 for each w ∈ ~Xε,ε,ε

qI ,qF
do

9 if w /∈ L2 then return ko

10 return ok

Figure 7 Antichain inclusion algorithm.

Our inclusion algorithm is given in Figure 7. We can prove that it always terminates
thanks to the finite base property of language abstractions. Additionally, its correctness is
based on the following: Lemmas 39 and 41 ensure that the repeat-until loop computes a basis
of the language L1 given by an OPA while the language saturation ensures the completeness
of this basis with respect to the inclusion problem.

I Theorem 42. The algorithm from Figure 7 terminates and decides language inclusion.

We establish that our inclusion algorithm for OPAs is in ExpTime as a consequence of
Lemma 26, Remark 34, the facts that the vector ~X maintains polynomially many sets of
words and the membership problem for OPAs is in PTime (Remark 17). We recall that
inclusion and universality are ExpTime-C for both OPLs and VPLs [3, 43].

I Theorem 43. For all OPAs A,B with respectively nA, nB states and m input letters, the
inclusion algorithm from Figure 7 with 6B as the language abstraction quasi-order decides if
L(A) ⊆ L(B) in time O(m× nA)O(m×nB)O(1) .

5 Conclusion

We provided, for the first time, a syntactic congruence that characterizes operator precedence
languages (OPLs) in the following exact sense: for any language L, the syntactic congruence
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has finitely many equivalence classes if and only if L is an OPL. Second, we gave sufficient
conditions for a quasi-order to yield an antichain algorithm for solving the universality and
language inclusion problems for nondeterministic automata. These conditions are satisfied
by our syntactic congruence, which, like any finite congruence, is monotonic for structured
words (i.e., chain-monotonic) and saturates its language. This results in an exponential-time
antichain algorithm for the inclusion of operator precedence automata (OPAs), which is
the optimal worst-case complexity for the ExpTime-hard problem. This will allow efficient
symbolic implementations of antichain algorithms to be extended to OPLs.

The possibility of future research directions regarding OPLs is still vast. One promising
direction is to study OPAs from a runtime verification [6] perspective. For example, extending
the runtime approaches for visibly pushdown automata [10, 49], one can study the monitor
synthesis and right-universality problems for OPAs to establish them as an expressively
powerful class of monitors. Also other methods developed for visibly pushdown automata may
be generalizable to OPAs based on our syntactic congruence, such as learning algorithms [41].

While OPLs characterize the weakest known restrictions on stack operations which enable
decidability of the inclusion problem, one may try to push the frontier of decidability by
relaxing the restrictions on stack operations further. Investigating similar restrictions in
the context of observability for counter automata can also provide new decidability results.
For example, [7] shows that hardcoding the counter operations (increments and decrements)
in the input letters yields decidable inclusion for one-counter automata. Another natural
direction is to investigate quantitative versions of OPAs, for instance, through the addition
of Presburger acceptance constraints, and to identify decidable fragments thereof [27].
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A Omitted Proofs

Proposition 20

Statement. ≈ is a chain-monotonic equivalence relation with finitely many classes.

Proof. The reflexivity, symmetry, and transitivity of ≈ is trivial, and the chain-monotonicity
follows from the definitions. We prove here that ≈ has finitely many equivalence classes.

Consider w ∈ Σ̂+ for which λ(w) is of the form a1 . . . a`b1 . . . bmc1 . . . cn for some `,m, n ∈
N and such that

a1 ≥m a2 ≥m . . . ≥m a` m b1 =̇ b2 =̇ . . . =̇ bm l c1 ≤l c2 ≤l . . . ≤l cn

where ai, bj , ck ∈ Σ for all i, j, k. Let P /
w = {a1, b1} ∪ {ai+1 | ai m ai+1} and P .

w =
{bm, cn} ∪ {ci | ci l ci+1}. By convention, we define P /

ε = P .
ε = {ε}. We can define the

profile of a word as Pw = (w/, w., P /
w, P

.
w). Note that there are at most |Σ̂|2 × 22|Σ̂| distinct

profiles. We show that Px = Py implies x ≈ y for all x, y ∈ Σ̂∗.
Let x, y ∈ Σ̂∗ be such that Px = Py. By the equality of profiles, we directly get x/ = y/

and x. = y.. Now, let u0, v0 ∈ Σ̂∗ be such that u0x
/ ∈ Σ̂∗≥m and x.v0 ∈ Σ̂∗≤l . Since x and

y agree on the first and last letters, we u0 and v0 also satisfy u0y
/ ∈ Σ̂∗≥m and y.v0 ∈ Σ̂∗≤l .

Now, let u, v ∈ Σ̂∗ be arbitrary. We want to show that u[u0xv0]v iff u[u0yv0]v. Note that
λ(x) is of the form given above, and since u0x

/ ∈ Σ̂∗≥m and x.v0 ∈ Σ̂∗≤l , the word u0xv0 is
also of the same form. Moreover, since y has the same profile as x, the same holds for u0yv0
as well. In particular, Pu0xv0 = Pu0yv0 . Then, if u[u0xv0]v, we have u. l a for all a ∈ P /

u0xv0

and b m v/ for all b ∈ P .
u0xv0

. Since the same holds for u0yv0, we get u[u0yv0]v. The other
direction is similar. J

Theorem 23

Statement. For every L ⊆ Σ̂∗, ≡L is a chain-monotonic equivalence relation.

Proof. The reflexivity, symmetry, and transitivity of ≡L is trivial. We prove that ≡L is
chain-monotonic. Let us define the following relation over Σ̂∗:

x ∼ y ⇐⇒ ∀u, v, u0, v0 ∈ Σ̂∗


(
u0x

/ ∈ Σ̂∗≥m ∧ x.v0 ∈ Σ̂∗≤l ∧ u[u0xv0]v
)

⇓(
uu0xv0v ∈ L⇔ uu0yv0v ∈ L

)
Recall that for every x, y ∈ Σ̂∗ we have x ≡L y if and only if both x ≈ y and x ∼ y holds,
where ≈ is the chain equivalence.

Let x, y ∈ Σ̂∗ such that x ≡L y, and let u, v, u0, v0 ∈ Σ̂∗ such that u0x
/, u0y

/ ∈ Σ̂∗≥m ,
x.v0, y

.v0 ∈ Σ̂∗≤l , u[u0xv0]v, and u[u0yv0]v. We claim that uu0xv0v ≡L uu0yv0v. Since
the chain equivalence ≈ is chain-monotonic, we get uu0xv0v ≈ uu0yv0v. Then, we only
need to show that uu0xv0v ∼ uu0yv0v. In particular, for every u′, v′, u′0, v′0 ∈ Σ̂∗ such that
u′0(uu0xv0v)/ ∈ Σ̂∗≥m , (uu0xv0v).v′0 ∈ Σ̂∗≤l , u′ [u′0uu0xv0vv

′
0]v′ we have u′u′0uu0xv0vv

′
0v
′ ∈ L

iff u′u′0uu0yv0vv
′
0v
′ ∈ L.

Let u′, v′, u′0, v′0 ∈ Σ̂∗ be such that u′0(uu0xv0v)/ ∈ Σ̂∗≥m , (uu0xv0v).v′0 ∈ Σ̂∗≤l , and
u′ [u′0uu0xv0vv

′
0]v′ . Furthermore, since uu0xv0v ≈ uu0yv0v, we have u′0(uu0yv0v)/ ∈ Σ̂∗≥m ,

(uu0yv0v).v′0 ∈ Σ̂∗≤l , and u′ [u′0uu0yv0vv
′
0]v′ .

Now, take u′′0 = u0, u′′ = u′u′0u, v′′0 = v0, and v′′ = vv′0v
′. Observe that since x ≡L y

and thanks to the choice of u, v, u0, v0 ∈ Σ̂∗ given above, we have u′′0x/ ∈ Σ̂∗≥m , u′′0y/ ∈ Σ̂∗≥m ,



22 Regular Methods for OPLs

x.v′′0 ∈ Σ̂∗≤l , y.v′′0 ∈ Σ̂∗≤l , u′′ [u′′0xv′′0 ]v′′ , and u′′ [u′′0yv′′0 ]v′′ . Moreover, u′′u′′0xv′′0 v′′ ∈ L iff
u′′u′′0yv

′′
0 v
′′ ∈ L, which is the same as u′u′0uu0xv0vv

′
0v
′ ∈ L iff u′u′0uu0yv0vv

′
0v
′ ∈ L. Then,

uu0xv0v ∼ uu0yv0v, and thus uu0xv0v ≡L uu0yv0v. Therefore, ≡L is chain-monotonic. J

Lemma 26

Statement. For every OPA A with n states and m input letters, the structural congruence
≡A has at most O(m)O(m×n)O(1) equivalence classes.

Proof. Suppose that L is an OPL over Σ̂, and let A = (Q, {qI}, F,∆) be a complete
deterministic OPA with the unique initial state qI such that L(A) = L. For every w ∈ Σ̂∗ the
functions fw and gw have a finite input domain and a finite output range. The functions Φw

however, have a finite input domain but an infinite output range. Nevertheless, only the top
of the output stack of Φw is used in ≡A and, for all w ∈ Σ̂∗, the functions (q, γ) 7→ (Φ(q, γ))>
do have a finite output range. Then, it is easy to see that ≡A has finitely many equivalence
classes, thanks to Proposition 20. In fact, it has at most:(
|Σ̂|2 × 22|Σ̂|)× (2|Q|)|Q|×(|Γ|+1) ×

(
2|Q|

)|Q|2×(|Γ|+1) ×
(
2|Γ|+1)|Q|×(|Γ|+1)

equivalence classes. We recall that Γ = Σ̂ × Q. Hence, in Landau’s notation we obtain
|≡A| ≤ O(|Σ̂|)O(|Σ|×|Q|)O(1) . J

Lemma 27

Statement. For every OPA A, the congruence ≡L(A) is coarser than the congruence ≡A.

Proof. We claim that every class of ≡A is contained in a class of ≡L, thus establishing
that ≡L also has finitely many equivalence classes. Consider x, y, u, v, u0, v0 ∈ Σ̂∗ such that
x ≡A y. Assume that u0x

/ ∈ Σ̂∗≥m , x.v0 ∈ Σ̂∗≤l , and u[u0xv0]v hold. Then, since x ≈ y,
we have that u0y

/ ∈ Σ̂∗≥m , y.v0 ∈ Σ̂∗≤l and u[u0yv0]v hold for all u, v, u0, v0 ∈ Σ̂∗ as well.
Next, we prove that all configurations (t, v, θ) where t ∈ Q and θ ∈ Φu(qI ,⊥) reachable
from (qI , uu0xv0v,⊥) is also reachable from (qI , uu0yv0v,⊥). As the role of x and y is
symmetrical, it implies that uu0xv0v ∈ L⇔ uu0yv0v ∈ L. There are four cases, depending
on the precedences between u.

0 ≥m x/ and x. ≤l v/
0 .

We have u. l u/
0 by definition, and we consider only the case where u.

0 m x/ and
x. =̇ v/

0 , as the other can be tackled similarly. From (qI , uu0xv0v,⊥) all configurations
that A can reach after reading u are of the from (qu, u0xv0v, θu · ⊥) where qu ∈ fu(qI ,⊥)
and θu ∈ Φu(qI ,⊥), because ε l u/. After reading u0, A can reach configurations of the
form (qu0 , xv0v, θu0 · θu · ⊥) where qu0 ∈ fu0(qu,⊥) and θu0 ∈ Φu0(qu,⊥), due to u.u0 ∈ Σ̂∗≤l .
Observe that we have been able to abstract the stack θu · ⊥ with ⊥ thanks to u. l u/

0.
Then A must performs pop-transitions since u0x

/ ∈ Σ̂∗≥m . After popping θu0 , the reachable
configurations are of the form (pu0 , xv0v, θu · ⊥) where pu0 ∈ gu0(qu, qu0 ,⊥). Observe that,
the stack is clear from the computation of u0 due to u.

0 m x/, in fact u[u0]x. All configurations
that A can reach after reading x are of the form (qx, v0v, θx · θu · ⊥) where qx ∈ fx(pu0 ,⊥)
and θx ∈ Φx(pu0 ,⊥), because u.x ∈ Σ̂∗≤l . Once again, we have been able to abstract the
stack θu · ⊥ with ⊥, this time it is thanks to u. l x/. Now, as we are dealing with x. =̇ v/

0 ,
A must clear the stack from the computation of x after reading v0, and so the function
gx must be called after reading gv0 . We emphasize that the stack θx · θu · ⊥ cannot be
abstracted by ⊥. However, since x.v0 ∈ Σ̂∗≤l , it can be abstracted by its top symbol, denoted
by θ>x . Observe that, in the case where x. =̇ v/

0 , we must have θx 6= ⊥, and thus the
top of θx indeed correspond to the top of θx · θu · ⊥. Let θ′x be defined by θx = θ>x θ

′
x.
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After reading v0, A can reach configurations of the from (qv0 , v, θv0 · θ′x · θu · ⊥). where
qv0 ∈ fv0(qx, θ

>
x ) and θv0 ∈ Φv0(qx, θ

>
x ), because x.v0 ∈ Σ̂∗≤l . It is worth noticing that

the top of the stack θ>x may have been modified while reading v0, due to x. =̇ v/
0 . For

instance, it is the case when v0 is a single letter. Then A must performs pop-transitions since
v0v

/ ∈ Σ̂∗≥m . After popping θv0 , the reachable configurations are of the form (pv0 , v, θ
′
x · θu ·⊥)

where pv0 ∈ gv0(qx, qv0 , θ
>
x ). Observe that, the stack is clear from the computation of v0

due to v.
0 m v/. Moreover, gv0 pops the modified top of θx. More pop-transitions must be

performed since xv/ ∈ Σ̂∗≥m . After popping θ′x, the reachable configurations are of the form
(px, v, θu · ⊥) where px = gx(pu0 , pv0 ,⊥). This time, the stack is clear from the computation
of x due to x. m v/. We emphasize that gx is used as it have been defined for. Indeed,
gx takes as parameters the current state pv0 and the parameters on which fx have been
previously called, i.e., pu0 and ⊥. By taking t = px and θ = θu · ⊥, we established that
(qI , uu0xv0v,⊥) ∗ (t, v, θ). As a direct consequence of x ≡A y, making the above reasoning
with y instead of x results dealing with identical intermediate sets of states and sets of stacks.
Hence, we proved that all configurations of the from (t, v, θ) where t ∈ Q and θ ∈ Φu(qI ,⊥)
reachable from (qI , uu0xv0v,⊥) is also reachable from (qI , uu0yv0v,⊥). J

Lemma 29

Statement. For every L ⊆ Σ̂∗, if ≡L has finite index then L is a Σ̂-OPL.

Proof. Consider a language L ⊆ Σ̂∗ such that ≡L has finitely many equivalence classes. We
construct a deterministic OPA that recognizes L and whose states are based on the equivalence
classes of ≡L. Given w ∈ Σ̂∗, we denote [w] its equivalence class with respect to ≡L. We
constructA = (Q, {q0}, F,∆) with the set of statesQ = {([u], [v]) | u, v ∈ Σ̂∗}, the initial state
q0 = ([ε], [ε]), the set of accepting states F = {([ε], [w]) | w ∈ L}, and the Σ̂-driven transition
function ∆: Q×Σ× (Γ+ ∪{⊥})→ Q× (Σ∪{ε})× (Γ+ ∪{⊥}), where Γ = Σ×Q, is defined
as follows: ∆ maps (([u], [v]), a, 〈b, ([u′], [v′])〉θ) to (([a], [ε]), ε, 〈a, ([u], [v])〉〈b, ([u′], [v′])〉θ) if
b l a, it returns (([uva], [ε]), ε, 〈a, ([u′], [v′])〉θ) if b =̇ a, and (([u′], [v′uv]), a, θ) if b m a.

Invariants. We show that the automaton A satisfies the following invariants after reaching
the state ([u], [v]) ∈ Q from the initial state q0:
1. The top of the stack is u. if u 6= ε, and ⊥ otherwise.
2. All outgoing on a ∈ Σ satisfies va ∈ Σ̂∗≥m and v 6= ε⇒ v. m a.
3. u ∈ Σ̂∗=̇.
4. u.v ∈ Σ̂∗≤l and v 6= ε⇒ u. l v/.
We prove all invariants together by induction on the length of the run from q0 that reaches
the state ([u], [v]) ∈ Q. The run starts in q0 = ([ε], [ε]) which trivially satisfies all invariants.
By induction we assume the invariants to hold for all run of length n > 0. Let ([u], [v]) be
the state reached after n transitions, a ∈ Σ be the incoming letter and (b, ([u′], [v′])) be the
top of the stack.

If b l a, the automaton A performs a push-transition to reach ([a], [ε]), which satisfies
(1) by definition of push-transition. The invariants (2, 3, 4) hold trivially.

If b =̇ a, the automaton A performs a shift-transition to reach ([uva], [ε]), which satisfies
(1) by definition of the shift-transition. Since a shift-transition is triggered, the stack is not
⊥. By the induction hypothesis, (1) ensures that u. = b and (2) ensures that va ∈ Σ̂∗≥m .
Consequently and because b =̇ a, we have that uva ∈ Σ̂∗=̇, i.e., (3) is preserved. The invariants
(2, 4) hold trivially.

If b m a, the automaton A performs a pop-transition to reach ([u′], [v′uv]). Since a
pop-transition is triggered, the stack is not ⊥. By the induction hypothesis, (1) ensures
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that u. = b, thus u. m a. In particular u 6= ε, and thus u/ ∈ Σ. Additionally, the induction
hypothesis gives us that va ∈ Σ̂∗≥m and v 6= ε ⇒ v. m a by (2). We have that uva ∈ Σ̂∗≥m
because u. m a, u ∈ Σ̂∗=̇ and u[v]a from (2, 3, 4). Finally, (4) ensures that u.v ∈ Σ̂∗≤l .

Since ([u′], [v′]) is on the stack, there exists a strict prefix of the current run that ends in
([u′], [v′]) and such that popping (b, ([u′], [v′])) recovers its stack. By the induction hypothesis
on such smaller run, (1) ensures that if u′ = ε then the stack is ⊥ otherwise the top is
u′., and (3) ensures that u′ ∈ Σ̂∗=̇. So, (1) and (3) are directly preserved. Continuing the
induction hypothesis, (2) ensures that v′u/ ∈ Σ̂∗≥m and (4) ensures that u′.v′ ∈ Σ̂∗≤l and
v′ 6= ε⇒ u′. l v′/. In the case where u′ 6= ε and v′ = ε, we get that v′uv 6= ε⇒ u′. l (v′uv)/

since u′. l u/ as the automaton A pushed ([u′], [v′]) on the stack while reading u/. The other
cases are immediate. Moreover, u′.v′uv ∈ Σ̂∗≤l comes as we established that u′.v′ ∈ Σ̂∗≤l ,
u ∈ Σ̂∗=̇ , u.v ∈ Σ̂∗≤l , and u′. l u/. Hence (4) is preserved. For the invariant (2), we
established that uva ∈ Σ̂∗≥m and v′u/ ∈ Σ̂∗≥m , which implies that v′uva ∈ Σ̂∗≥m . We also
established that v 6= ε⇒ v. m a and u. m a, which implies that (v′uv). m a. In particular,
the invariant (2) is preserved.

Determinism. For all states ([a], [ε]), ([b], [ε]) ∈ Q reachable in A with a push-transition,
if a 6= b then a 6≈ b which implies that a 6≡L b. Reciprocally, if a ≡L b then a ≈ b, which
implies that a = b.

For all states ([u1], [v1]), ([u2], [v2]) ∈ Q and all a ∈ Σ, let ([u1v1a], [ε]), ([u2v2a], [ε])
be two states reachable in A with a shift-transition. We show that, if u1 ≡L u2 and
v1 ≡L v2 then u1v2a ≡L u2v2a. If v1 = ε, then v2 ≡L v1 implies v2 = ε. Also u1 ≡L u2
implies u1a ≡L u2a by chain-monotonicity of ≡L. Otherwise, if v1 6= ε, then v2 ≡L v1
implies v2 6= ε. Furthermore, u1 [v1]a and u1 [v2]a, since u1 ≈ u2 and the invariants (2) and
(4) hold. In particular, u.

1v2a ∈ Σ̂∗=̇. By chain-monotonicity of ≡L, we have v1 ≡L v2
implies u1v1a ≡L u1v2a, and u1 ≡L u2 implies u1v2a ≡L u2v2a Hence, u1v1a ≡L u2v2a, by
transitivity of ≡L.

For all states ([u1], [v1]), ([u2], [v2]), ([u′1], [v′1]), ([u′2], [v′2]) ∈ Q, we let ([u′1], [v′1u1v1]) and
([u′2], [v′2u2v2]) be two states reachable in A with a pop-transition. We show that, if u1 ≡L u2,
v1 ≡L v2, and v′1 ≡L v′2, then v′1u1v1 ≡L v′2u2v2. As a direct consequence of the invariants,
we have that v′

1u1 [u1]ε, v′
1u1 [u2]ε, ε[v′1u1v2]ε, ε[v′1u2v2]ε, ε[v′1]u2v2 , and ε[v′2]u2v2 . Additionally,

v′1u
/, v′1u

/
2 ∈ Σ̂∗≥m and u.

1v2, u
.
2v2 ∈ Σ̂∗≤l . By chain-monotonicity of ≡L, we have v1 ≡L v2

implies v′1u1v1 ≡L v′1u1v2, ≡L, u1 ≡L u2 implies v′1u1v2 ≡L v′1u2v2, and v′1 ≡L v′2 implies
v′1u2v2 ≡L v′2u2v2. Hence, v′1u1v1 ≡L v′2u2v2, by transitivity of ≡L.

Correctness. We have L(A) = L since [w] ∩ L = ∅ or [w] ⊆ L, for all w ∈ Σ∗. More
precisely, every w ∈ Σ̂∗ admits a unique run (([ε], [ε]), w,⊥) ∗ (([ε], [w′]), ε,⊥) since
A is deterministic. By induction we prove that, for all x, y ∈ Σ∗, all θ ∈ Γ+ ∪ {⊥}, if
(q0, xy,⊥) ∗ (([u0], [v0], y, θ) then there exist n ∈ N, and (ai, ([ui], [vi]))i∈{1...n} such that
θ = 〈a1, ([u1], [v1])〉...〈an, ([un], [vn])〉⊥ and x ≡L unvn . . . u0v0. In particular, we get that
w ≡L w′ implying that w ∈ L(A) iff ([ε], [w′]) ∈ F iff w′ ∈ L iff w ∈ L. The base case, when
the run has length n = 0, is trivial since x = ε and θ = ⊥. Suppose that the property holds
for all runs of length n, we prove that it holds for runs of length n+ 1. Let z = unvn . . . u0v0.
In the case where the last transition is a push-transition that reads a ∈ Σ̂ from ([u0], [v0]).
If z = ε then x = ε since x ≡L z. Hence xa ≡L za holds trivially. Otherwise z 6= ε. Since
a push-transition is triggered and u.

0v0 ∈ Σ̂∗≤l by invariant (2), we have that ε[z]a. Since
x ≡L z and ε[x]a holds as well then we get xa ≡L za by chain-monotonicity. In the case
where the last transition is a pop-transition from ([u0], [v0]). Then the reached state is
([u1], [v1u0v0]) and the property is trivially preserved. In the case where the last transition
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is a shift-transition that reads a ∈ Σ̂ from ([u0], [v0]). Since a shift-transition is triggered,
we that the u.

0 =̇ a by invariant (1). In particular u0 6= ε. By invariant (2), if v0 6= ε then
v.

0 m a. Due to x ≡L z, we have that x. = v.
0 . So, xa ≡L za since ε[x]a and ε[z]a. Otherwise

if v0 = ε. Due to x ≡L z and u0 6= ε, we have that x. = u.
0. So, xa ≡L za since ε[x]a and

ε[z]a. J

Proposition 35

Statement. For every OPA A, 6A is a computable chain-monotonic well quasi-order.

Proof. Let Σ̂ be an operator precedence alphabet, and A = (Q, I, F,∆) be an OPA. We only
show that the structural quasi-order 6A is chain-monotonic since the rest is argued before
the statement in the main body of the paper. Let us define the following relation over Σ̂∗:

x� y ⇐⇒ ∀q ∈ Q,∀γ ∈ Γ ∪ {⊥}
∧

fx(q, γ) ⊆ fy(q, γ)
gx(q, q′, γ) ⊆ gy(q, q′, γ)
(Φx(q, γ))> ⊆ (Φy(q, γ))>

Recall that for every x, y ∈ Σ̂∗ we have x 6A y iff x ≈ y and x � y, where ≈ is the
chain equivalence. In particular, we want to show that for every x, y, u, v, u0, v0 ∈ Σ̂∗
such that u0x

/, u0y
/ ∈ Σ̂∗≥m , x.v0, y

.v0 ∈ Σ̂∗≤l , u[u0xv0]v, u[u0yv0]v, and x 6A y, we have
uu0xv0v 6A uu0yv0v. Since the chain equivalence ≈ is chain-monotonic, we only need to show
that � is chain-monotonic, i.e., we have uu0xv0v � uu0yv0v for every x, y, u, v, u0, v0 ∈ Σ̂∗
as above.

Let ? /∈ Σ be a fresh letter for which we extend the precedence relation with a l ? for all
a ∈ Σ. Let w ∈ Σ̂∗, q, q′ ∈ Q, and γ ∈ Γ ∪ {⊥}. Recall the following:

fw(q, γ) = {qw ∈ Q | ∃γw ∈ Γ+ ∪ {⊥}, (q, w?, γ) ∗ (qw, ?, γw)}

Φw(q, γ) = {γw ∈ Γ+ ∪ {⊥} | ∃qw ∈ Q, (q, w?, γ) ∗ (qw, ?, γw)}

gw(q, q′, γ) = {pw ∈ Q | ∃γw ∈ Φw(q, γ), (q′, ε, γw) ∗ (pw, ε,⊥)}

Now, let x, y, u, v, u0, v0 ∈ Σ̂∗ such that u0x
/, u0y

/ ∈ Σ̂∗≥m , x.v0, y
.v0 ∈ Σ̂∗≤l , u[u0xv0]v,

u[u0yv0]v, and x 6A y. Since x 6A y implies x ≈ y, which implies x/ = y/ and x. = y., it
is clear that from the definitions that fuu0xv0v(q, γ) ⊆ fuu0yv0v(q, γ) and Φuu0xv0v(q, γ) ⊆
Φuu0yv0v(q, γ) for all q ∈ Q and γ ∈ Γ ∪ {⊥}. Intuitively, the reasoning for this is as follows:
A reaches a set of configurations after processing uu0. For every configuration in this set,
consider the state and the top stack symbol given as inputs to fx and fy, as well as Φx and Φy,
for whose outputs we know the inclusion relation above. It means that after reading uu0x and
uu0y from any state and top stack symbol we have the same relations as well. Now, consider
this time the states and top stack symbols of the configurations reached after uu0x and uu0y.
Proceeding the computation from these configurations with the suffix v0v clearly preserves
the inclusion relation for the sets of states reached. For the sets of stacks, note that u[u0xv0]v
and u[u0yv0]v, therefore the suffix v0v pops the stack beyond what has been pushed while
reading x and y, which is the same for both words. Finally, for all q, q′ ∈ Q and all γ ∈ Γ ∪
{⊥}, we have that guu0xv0v(q, q′, γ) ⊆ guu0yv0v(q, q′, γ) from Φuu0xv0v(q, γ) ⊆ Φuu0yv0v(q, γ)
which implies that {(q′, ε, γw) | γw ∈ Φuu0xv0v(q, γ)} ⊆ {(q′, ε, γw) | γw ∈ Φuu0yv0v(q, γ)}.
Therefore, uu0xv0v � uu0yv0v, and thus uu0xv0v 6A uu0yv0v, implying that 6A is chain-
monotonic. J
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Lemma 36

Statement. For every OPA A and w1, w2 ∈ Σ̂∗, if w1 6A w2 and w1 ∈ L(A) then
w2 ∈ L(A).

Proof. Let A = (Q, I, F,∆). If w1 ∈ L(A) then (qI , w1,⊥) ∗ (qF , ε,⊥) for some qI ∈ I
and qF ∈ F . Since w1 6A w2, we also have that (qI , w1,⊥) ∗ (qF , ε,⊥) implying that
w2 ∈ L(A). J

Lemma 39

Statement. Let A = (Q, I, F,∆) be an OPA, and let Γ = Σ×Q. Considering ~Ua,b,c
s,t = ε

when a = b and s = t, otherwise ~Ua,b,c
s,t = ∅. The following holds for all n > 0:

Catn(~Ua,b,c
s,t )=

{
u | (s, uc, α) ∗(t, c, β), |u| = n, α ∈ Θa, β ∈ Θb, au ∈ Σ̂∗≤l , uc ∈ Σ̂∗≥m , u. = b

}
where, for all a ∈ Σ̂, the set of stack symbols Θa ⊆ Γ ∪ {⊥} is defined by Θa = {⊥} if a = ε,
and Θa = {〈a, q〉 | q ∈ Q} otherwise.

Proof. For readability, we define the set of runs Ωa,b,c
s,t,n(w), for all a, b, c ∈ Σ̂, s, t ∈ Q, n ∈ N

and w ∈ Σ̂∗ as follows.

Ωa,b,c
s,t,m(w) =

 ρ
∧ ρ = (s, wc, α) m (t, c, β) ∧m ≤ 2|u|

α ∈ Θa ∧ β ∈ Θb

aw ∈ Σ̂∗≤l ∧ wc ∈ Σ̂∗≥m ∧ (aw). = b


We reformulate the statement as u ∈ Catn(~Ua,b,c

s,t ) if and only if Ωa,b,c
s,t,2n(u) 6= ∅. For all

u ∈ Catn(~Ua,b,c
s,t ), it takes a simple induction on |u| to prove that Ωa,b,c

s,t,2n(u) 6= ∅, because
Cat follows runs of A and preserves the invariants m ≤ 2|u|, au ∈ Σ̂∗≤l , uc ∈ Σ̂∗≥m , (au). = b

by definition. Next, we prove that Ωa,b,c
s,t,2n(u) 6= ∅ implies u ∈ Catn(~Ua,b,c

s,t ), where n = |u|.
The proof goes by induction on the structure of w = auc. In the base case, w does not

admit any subchains, i.e., λ(w) = w. If Ωa,b,c
s,t,2n(u) 6= ∅ holds, then, au ∈ Σ̂∗≤l and uc ∈ Σ̂∗≥m .

Together with λ(w) = w, it implies that u ∈ Σ̂∗=̇. Hence, any run witnessing Ωa,b,c
s,t,2n(u) 6= ∅

performs exclusively shift-transitions. Actually, since that run performs exclusively shift-
transitions, it length must be n = |u|. The base case goes by induction on such a witnessing
run of the length n. Having n = 0 implies u = ε and (s, ua, α) = (t, a, β). In fact ~U is defined
such that ε ∈ ~Ua,b,c

s,t,a exactly when a = b and s = t. By induction, we assume that there
exists a run of Ωa,b,c

s,t,2n(u) of length n = |u| of the form (s, uc, α) a′ (q, vc, θ) n−1 (t, c, β)
where u = a′v and a′ = θ>. In particular (q, vc, θ) n−1 (t, c, β) witnesses Ωa′,b,c

q,t,2|v|(v) 6= ∅.
So, v ∈ Cat|v|(~Ua′,b,c

q,t ) by induction hypothesis. Finally, u ∈ Catn(~Ua,b,c
s,t ) by definition of

CatShift.
In the inductive step, we assume that w is of the form a0u0a1u1 . . . akukak+1 such that

for all 0 ≤ i ≤ k, either ai [ui]ai+1 or ui = ε, and λ(a0a1 . . . ak+1) = a0a1 . . . ak+1. It is
worth emphasizing that a0 = a, and b = (au). and ak+1 = c by definition of w. Also
k > 0, since otherwise λ(w) = w, which is the base case of this induction. As in the base
case, if Ωa,b,c

s,t,2n(u) 6= ∅ then au ∈ Σ̂∗≤l and uc ∈ Σ̂∗≥m , which implies a0a1 . . . ak+1 ∈ Σ̂∗=̇ since
λ(a0a1 . . . ak+1) = a0a1 . . . ak+1. If there exists a run ρ witnessing Ωa0,(au).,ak+1

s,t,2n (u) 6= ∅
with n = |u| then, due to a0a1 . . . ak+1 ∈ Σ̂∗=̇, for all 1 ≤ i ≤ k, there exists a run ρi over ui

such that ρ = ρ0
a1 ρ1

a2 · · · ak ρk. Since ai [ui]ai+1 for all 0 ≤ i ≤ k, each ρi witnesses
Ω

ai,(aiui).,ai+1
si,ti,2ni

(ui) 6= ∅ with ni = |ui| and si, ti ∈ Q. However, the induction hypothesis
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cannot be apply on Ω
ai,(aiui).,ai+1
si,ti,2ni

(ui) 6= ∅, as it may have the same chain structure as
w. Hence, we proceed by cases to prove that ui ∈ Catni(~Uai,(aiui).,ai+1

si,ti
). In the case when

ui = ε the run ρi witnessing Ωai,(aiui).,ai+1
si,ti,2ni

(ui) 6= ∅, or equivalently Ωai,ai,ai+1
si,ti,2ni

(ui) 6= ∅
must be empty since ai =̇ ai+1. This implies that si = ti. In fact, we trivially have that
ε ∈ ~U

ai,ai,ai+1
si,si,2ni

(ui) by definition of ~U . Equivalently, ui ∈ Catni ~U
ai,(aiui).,ai+1
si,ti,2ni

(ui) 6= ∅.
Otherwise ui 6= ε. Let b′i = u/

i , bi = u.
i , and u′i be such that ui = b′iu

′
i. In this cases, the

run ρi witnessing Ωai,(aiui).,ai+1
si,ti,2ni

(ui) 6= ∅ must starts with a push-transition on b′i since
ai l b′i, and must ends with a pop-transition on bi since bi m ai+1. In other words, there
exists some run ρ′i witnessing Ωb′

i,bi,ai+1
s′

i
,t′

i
,2n′

i
(u′i) 6= ∅ where |u′i| = n′i and s′i, t′i ∈ Q. Now, we

can apply the induction hypothesis on w′ = b′iu
′
iai+1 which is a strict subchain of w. Hence,

u′i ∈ Catn′
i(~U b′

i,bi,ai+1
s′

i
,t′

i
). The rest of the proof is straightforward. For all 1 ≤ i ≤ k, we get

ui ∈ Catni ~U
ai,(aiui).,ai+1
si,ti,2ni

(ui) 6= ∅ by definition of CatChain and since ai [ui]ai+1 . Finally,
we can prove that u ∈ Catn(~Ua,b,c

s,t ) by induction on k, by definition of CatShift and since
a0a1 . . . ak+1 ∈ Σ̂∗=̇. J

Lemma 41

Statement. Let 4 be a chain-monotonic quasi-order over Σ̂∗. For every A = (Q, I, F,∆)
and ~X, ~Y such that B( ~Xa,b,c

s,t 4 ~Y a,b,c
s,t ) holds for all s, t ∈ Q and all a, b, c ∈ Σ∪ {ε}, we have

B(Cat( ~Xa,b,c
s,t ) 4 Cat(~Y a,b,c

s,t )) holds also for all s, t ∈ Q and all a, b, c ∈ Σ ∪ {ε}.

Proof. Assume that B( ~Xa,b,c
s,t 4 ~Y a,b,c

s,t ) holds for all s, t ∈ Q and all a, b, c ∈ Σ ∪ {ε}.
In particular, for all y0 ∈ ~Y a,b,c

s,t , there exists x0 ∈ ~Xa,b,c
s,t such that x0 4 y0. Consider

y ∈ Cat(~Y a,b,c
s,t ), we show that there exists x ∈ Cat( ~Xa,b,c

s,t ) such that x 4 y. By definition
of Cat, there are three cases: Either (1) y ∈ ~Y a,b,c

s,t or, (2) y ∈ CatShift(~Y a,b,c
s,t ), or (3)

y ∈ CatChain(~Y a,b,c
s,t ). We show (2) since (3) can be prove similarly and (1) is trivial from

B( ~Xa,b,c
s,t 4 ~Y a,b,c

s,t ). Suppose that y is of the form y1b
′y2 for some y1 ∈ ~Y a,a′,b′

s,s′ , b′ ∈ Σ, and
y2 ∈ ~Y b′,b,c

t′,t . By hypothesis, there exist x1 ∈ ~Xa,a′,b′

s,s′ and x2 ∈ ~Xb′,b,c
t′,t such that x1 4 y1 and

x2 4 y2. If y1 = ε then x1 = ε and thus x1b
′ 4 y1b

′. If y1 6= ε then y.
1 = a′ ≤l b′ and x.

1 ≤l b′

since y1 ≈ x1. We have that ε[x1b
′]ε and ε[y1b

′]ε. So, x1b
′ 4 y1b

′. We have that ε[x1b
′y2]ε

and ε[y1b
′y2]ε. So, x1b

′y2 4 y1b
′y2. If b′ l y2 then b′ l x2. We have that x1b′ [x2]ε and

x1b′ [y2]ε. So, x1b
′x2 4 x1b

′y2. By transitivity, x1b
′x1 4 x1b

′y2. If b′ =̇ y2 then b′ =̇ x2. We
have that ε[x1b

′x2]ε and ε[x1b
′y2]ε. So, x1b

′x2 4 x1b
′y2. By transitivity, x1b

′x1 4 y1b
′y2. J

Theorem 42

Statement. The algorithm from Figure 7 terminates and decides language inclusion.

Proof. First, we show that the inclusion algorithm from Figure 7 always terminates. From
the definition of Cat and the constant ~U , we have that each component of ~X holds a finite set
of words after executing finitely many instructions. The halting conditions of the repeat/until
loop is effectively computable. Indeed, deciding B(X 4 Y ) where X, Y are finite sets and 4
a decidable quasi-order, can be done by checking whether X ⊆ Y and that for every y ∈ Y
there exists x ∈ X such that x 4 y. Additionally, the quasi-order 4 is a well-quasiorders and
thus, there is no infinite sequence {Xi}i∈N such that 4�X1 ( 4�X2 ( . . . . Since B(X 4 Y )
is defined by X ⊆ Y ∧ 4�X = 4�Y and since Cat only extends the upward closures of the
components of ~X, we find that the repeat/until loop must terminate after finitely many
iterations.
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Now, we show that the inclusion algorithm from Figure 7 is correct. Supposing that
the algorithm returns ko. Once ~X reached the fixpoint computed by the repeat/until loop,
all w ∈ ~Xε,ε,ε

qI ,qF
where qI ∈ I and qF ∈ F belong to L1 by Lemma 39. Hence, when the

algorithm returns ko, then L1 6⊆ L2. Conversely, supposing that L1 6⊆ L2, in particular
let w ∈ L2 \ L1. In fact, w belongs to Catn(~Uε,ε,ε

qI ,qF
) for some qI ∈ I, qF ∈ F and n ∈ N,

by Lemma 39. Additionally, observe that once ~X reached the fixpoint computed by the
repeat/until loop, ~Xε,ε,ε

qI ,qF
is a base of Catn(~Uε,ε,ε

qI ,qF
), i.e. B( ~Xε,ε,ε

qI ,qF
4 Catn(~Uε,ε,ε

qI ,qF
)). This can

be proved by induction thanks to Lemma 41. Hence, there exists w0 ∈ ~Xε,ε,ε
qI ,qF

such that
w0 4 w. Since 4 satisfies that (w0 4 w ∧ w0 ∈ L2) =⇒ w ∈ L2, we get w0 /∈ L2 and thus
the algorithm returns ko. J
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